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HILBERT SPACE METHODS FOR CONTROL THEORETIC

SPLINES: A UNIFIED TREATMENT

Y. ZHOU∗, M. EGERSTEDT† , AND C. MARTIN‡

Abstract. In this paper we give a basic derivation of smoothing and interpolating splines and

through this derivation we show that the basic spline construction can be done through elementary

Hilbert space techniques. Smoothing splines are shown to naturally separate into a filtering problem

on the raw data and an interpolating spline construction. Both the filtering algorithm and the

interpolating spline construction can be effectively implemented. We show that a variety of spline

problems can be formulated into this common construction. By this construction we are also able to

generalize the construction of smoothing splines to continuous data, a spline like filtering algorithm.

Through the control theoretic approach it is natural to add multiple constraints and these techniques

are developed in this paper.

1. Introduction. Estimation and smoothing for data sets that contain deter-
ministic and random data present difficulties not present in purely random data sets.
Yet such data sets are very common in practice and if the nature of the data is not
respected conclusions may be drawn that have little relation to reality. In this pa-
per we will present a unified treatment of such problems. We will extend the theory
of smoothing splines to cover such situations. Some of the techniques that we will
use have been developed in papers by Egerstedt and Martin, [4, 8, 14] and their col-
leagues. The main technical contribution of this paper will be to show that many of
these problems can be cast as minimum norm problems in suitable a Hilbert spaces.
This approach unifies a series of problems that have been solved by Egerstedt, Zhou,
Sun and Martin, [17, 18, 19]. Furthermore, the approach of this paper gives a unified
treatment of smoothing splines as developed by Wahba, [15], and the classical poly-
nomial and exponential interpolating splines. The approach of this paper rests on the
Hilbert space methods developed by Luenberger in [7].

The theory of smoothing splines is based on the premise that a datum, α is the
sum of a deterministic part, β and a random part ε. It is assumed that ε is the
value of a random variable from some probability distribution. Smoothing splines
are designed to approximate the deterministic part by minimizing the variance of
the random part. Often the random variable comes from measurement error. In
the following examples the random error comes either from measurement or from
estimation based on incomplete data.
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Example 1. A very simple problem is to determine the volume of water con-
tained in a playa lake in West Texas, [12]. These are transient water supplies that
because of their formation are almost perfectly circular. If a transect is made across
the center of the lake it is possible to obtain a fairly good estimate of the volume. At
the boundary of the lake the depth of the water is 0cm. However the depth is measured
by a graduate student wading through the lake and measuring the depth at a series of
points. These measurement are quite random. The bottom of the lake is silted and so
it is not clear where the bottom of the probe rests and the measurement is made by
reading the depth of a marked probe. The data set then consists of two deterministic
values at the boundary and a series of random numbers representing the depth at a
series of predetermined points.

Example 2. In population studies the census is taken every ten years and whether
correct or not the values of the census are considered to be absolute for many purposes.
Estimates are made of populations within a given city at irregular intervals between
the censuses. Thus, if it is necessary to study the growth or decline of a city over a
long period of time deterministic data is available at ten year intervals and estimated
data is available at shorter and often irregular time periods. The data set consists of
deterministic census data and estimated data with random error. Estimates such as
the report by the State of California, [11], are a necessary and critical part of planning
for governments.

Example 3. For most individuals in the United States their home is the principle
component of their financial portfolio. The question of the value of the portfolio is of
interest in a variety of economic indicators, [9]. When the home is purchased there is
a firm monetary value that can be measured and when the home is sold there is a firm
value. In between the value is less certain. Almost every individual can give you an
estimate of the value but unless a formal appraisal is done there may be a very large
error in the estimate. This results in a data set with a few deterministic values, the
purchase price, the selling price and formal appraisals and many random values that
are estimates by the owner.

These problems all have in common some data that can be assumed to be exact
and some data that is subject to error. The goal of this paper is to find a common
frame work to treat all such linear problems.

In this paper we will consider the problem of approximating discrete or continu-
ous data using the dynamics of a linear controlled system. The system may have hard
constraints such as boundary values and/or hard constraints at internal values. The
data will be assume to noisy with known statistics. A contribution of this paper is
to formulate these problems as a general class of minimum norm problems in Hilbert
space. Egerstedt, Sun and Martin, [8, 14], have formulated interpolation problems
as minimum norm problems but the general problems of smoothing spines have not
to this point been so formulated. The advantage is more than conceptual in that
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the smoothed data is immediately available as is the smooth functional approxima-
tion. Thus we will be able to split the problems into an estimation problem and a
problem of finding the interpolating splines. Both of these problems can have fast
implementations.

The outline of the paper is as follows. In Section 2 we state and solve the basic
problem of smoothing splines using Hilbert space methods to solve an associated
minimum norm problem. In Section 3 we state the basic algorithm for solving optimal
control problems in Hilbert space as minimal norm problems. This algorithm is the
basis for the entire paper. In Section 4 we show that interpolating splines can be
constructed using Hilbert space‘ techniques. More importantly in this section we
extend the basic theory of interpolating splines to find interpolating splines with
optimal initial data. In Hilbert space this is a trivial extension of the theory but not
using other methods. In Section 5 we make a major extension of the theory to problem
in which there are additional hard constraints. In one sense this amounts to changing
the spline generator to general linear boundary value problems but we show that
these additional hard constraints can be made to define the ”constraint variety” and
again handled as minimum norm problems. In this section we solve several classical
problems. In Section 6 we consider the related problem of smoothing continuous data.
The main conceptual result is that these problems are in reality no different than the
problem of discrete data. The only complication is that they tend to involve a lot of
integration. However we show that we can solve these filtering problems even when
there are additional constraints that the filtered result must satisfy.

2. Statement of the basic problem. In this section we state the basic problem
of smoothing splines and construct the solution. Here we show that the construction
splits into two parts in a very natural way. Ultimately, this will allow the imple-
mentation of fast algorithms for smoothing spline constructions. The basic idea of
the construction is to define a linear variety, in a Hilbert space, that is defined by
the constraints. The data is then defined as a point in the Hilbert space and the
optimization reduces to finding the point on the affine variety that is closest (in the
sense of the norm in the Hilbert space) to the data point. We know that we can
construct this point by finding the orthogonal complement of the linear variety that
defines the affine variety and constructing the intersection of the affine variety with
the orthogonal complement. In this process we follow Luenberger, [7].

2.1. The definitions. Let

(2.1) ẋ = Ax + bu, y = cx, x(0) = x0

be a controllable and observable linear system with initial data x(0) = x0. We think
of this system as the curve generator. As will be seen we achieve the smoothest
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approximation if we impose the conditions for n ≥ 2

(2.2) cb = cAb = cA2b = · · · = cAn−2b = 0

where n is the dimension of the system. We impose this condition to obtain maximal
smoothness in the functions to be defined by equation (2.4). The initial data can
be chosen as part of the optimization algorithm. However, when we consider two
or multiple point value problems we will see that the initial data can be specified.
Throughout we will use ( )′ to denote transpose of a matrix.

Let a data set be given as

D = {(ti, αi) : i = 1, · · · , N}
and assume that ti > 0 and let T = tN . We will refer to the points ti as the “nodes.”
Our goal is to find a control u(t) that minimizes

(2.3) J(u, x0) =
∫ T

0

u2(t)dt + (ŷ − α̂)′Q(ŷ − α̂) + x′
0Rx0

where Q and R are positive definite matrices. It is not strictly necessary for these
matrices to be positive definite. However, as in the case of the linear regulator, if they
are not positive definite then other conditions must be imposed to ensure a unique
solution. We will discuss this further in Section 2.2. The vector ŷ has components

yi = y(ti) = ceAtix0 +
∫ ti

0

ceA(ti−s)bu(s)ds

and the vector α̂ has components αi.
It is convenient to define the functions

(2.4) �i(s) =

⎧⎨
⎩ceA(ti−s)b, ti ≥ s,

0, ti < s.

Note that if the assumption on zeros, equation (2.2), holds then �i(s) is n − 2 times
continuously differentiable at ti, i.e.

(2.5) �
(k)
i (t) =

⎧⎨
⎩cAkeA(ti−s)b, ti ≥ s,

0, ti < s.

As long as cAkb = 0 the �
(k)
i (t) is continuous, that is until k = n − 2. We can now

write

yi = ceAtix0 +
∫ T

0

�i(s)u(s)ds = ceAtix0 + 〈�i, u〉L,

where 〈�i, u〉L :=
∫ T

0
�i(s)u(s)ds. Now let βi := R−1eA′tic′. Then,

yi =ceAtix0 +
∫ T

0

�i(s)u(s)ds

=〈βi, x0〉R + 〈�i, u〉L
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where we define the inner products

〈x, w〉R = x′Rw and 〈g, h〉L =
∫ T

0

g(t)h(t)dt.

Note that if we carefully take the derivatives of y(t) when u = �i(t) we have

y(2n−2)(t) =
n−2∑
k=0

cAn−2+kb�
(n−2−k)
i (t) +

∫ T

0

cA2n−1eA(t−s)b�i(s)ds.

Now this derivative is continuous but the next derivative fails to be so. Thus this y

is 2n − 2 times continuously differentiable everywhere and real analytic between the
nodes.

2.2. The Hilbert space and the affine variety. Let

H = L2[0, T ]× R
n × R

N

with norm

‖(u; x; d)‖2 =
∫ T

0

u2(t)dt + d′Qd + x′Rx,

and corresponding inner product

〈(u; x; d), (v; z; f)〉 =
∫ T

0

u(t)v(t)dt + x′Rz + d′Qf.

Note that elements of L2[0, T ] are equivalence classes of functions. As is usual we will
work with representatives of each equivalence class. A data point in H is denoted by
p. We define the linear subspace of constraints, V0, in H as

V0 = {(u; x; d) : 0 = −di + 〈βi, x〉R + 〈�i, u〉L}.

We use the notation V0 for consistency with later notation. Note that V0 is of infinite
dimension since it contains a copy of L2[0, T ] and is of finite co-dimension since it is
the intersection of a finite number of co-dimension 1 subspaces. We will construct the
orthogonal complement of V0 in H. Also we note that given any pair (u; x) there is a
corresponding d.

Lemma 2.1. The orthogonal complement of V0 in H is

V ⊥
0 = {(v; w; z) : w +

N∑
i=1

〈z, ei〉Qβi = 0, v +
N∑

i=1

〈z, ei〉Q�i = 0}.

Proof. By definition

V ⊥ = {(v; w; z) : 〈v, u〉L + 〈z, d〉Q + 〈w, x〉R = 0, ∀ (u; x; d) ∈ V }.
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Now we have

〈z, d〉Q =
N∑

i=1

〈z, ei〉Qdi =
N∑

i=1

〈z, ei〉Q[〈βi, x〉R + 〈�i, u〉L]

=〈
N∑

i=1

〈z, ei〉Qβi, x〉R + 〈
N∑

i=1

〈z, ei〉Q�i, u〉L.

Therefore we have

0 =〈v, u〉L + 〈w, x〉R + 〈z, d〉Q

=〈v, u〉L + 〈w, x〉R + 〈
N∑

i=1

〈z, ei〉Qβi, x〉R + 〈
N∑

i=1

〈z, ei〉Q�i, u〉L

=〈w +
N∑

i=1

〈z, ei〉Qβi, x〉R + 〈v +
N∑

i=1

〈z, ei〉Q�i, u〉L.

From the definition of V0 we have that given a pair (u : x0) the there exists a d so that
(u; x0, d) ∈ V0. Thus the above equality is true for u ∈ L2[0, T ] and for all x ∈ R

n

and as a consequence we must have

0 = w +
N∑

i=1

〈z, ei〉Qβi and 0 = v +
N∑

i=1

〈z, ei〉Q�i.

Note that the latter equality is in the sense of L2[0, T ]. The lemma follows.

2.3. The intersection of V0 ∩ (V ⊥
0 + p). Before constructing the intersection

two things must be verified. The first is that V0 is nonempty and the second is that
V0 is closed. That V0 is nonempty is a consequence of the fact that every choice of u

and x determines a triple in V0. We state as a lemma the fact that V0 is closed.
Lemma 2.2. V0 is a closed subspace of the Hilbert space H.
Proof. Define the function with domain L2[0, T ]× R

n and range R
N as

Fi((u; x)) = 〈βi, x〉R + 〈�i, u〉L.

Note that Fi is continuous since it is defined in terms of the inner products and note
that V0 is the graph of F where F is the function with components Fi. It then follows
from the closed graph theorem that V0 is closed in H.

Since V0 is closed we have that the intersection of V0 and V ⊥
0 + p consists of

a single point. This point is the solution of the optimal control problem given by
equations (2.1) and (2.3).

Lemma 2.3. The intersection of V0 ∩ (V ⊥
0 + p) is

V0 ∩ (V ⊥
0 + p) = {(

N∑
i=1

γi�i;
N∑

i=1

ρiβi; (I + GQ + FQ)−1(GQ + FQ)α̂)},
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where

γi =〈[I − (I + GQ + FQ)−1(GQ + FQ)]α̂, ei〉Q,

ρi =〈[I − (I + GQ + FQ)−1(GQ + FQ)]α̂, ei〉Q.

Proof. Equating quantities from V0 and V ⊥
0 + p, (Here p = (0; 0; α̂) is the data

point) we have from the definition of V0 and some rearrangement of terms

di =〈βi, x〉R + 〈�i, u〉L

= −
N∑

j=1

〈z, ej〉Q〈βi, βj〉R −
N∑

j=1

〈z, ej〉Q〈�i, �j〉L

Now, equating d with ŷ and z with ŷ − α̂, we get

yi = −
N∑

j=1

〈ŷ − α̂, ej〉Q〈βi, βj〉R −
N∑

j=1

〈ŷ − α̂, ej〉Q〈�i, �j〉L

= − e′iGQ(ŷ − α̂) − e′iFQ(ŷ − α̂)

where G is the Grammian of the βi’s and F is the Grammian of the �is. Note that
since the �is are linearly independent, F is invertible. In more compact form we have

ŷ = −(GQ + FQ)(ŷ − α̂),

or finally we have that

(2.6) (I + GQ + FQ)ŷ = (GQ + FQ)α̂.

By rewriting I +GQ+FQ = (Q−1 +F +G)Q and since F and Q are positive definite
and G is positive semi-definite the matrix (I + GQ + FQ) is invertible and we find ŷ

as linear function of the data α̂. This ŷ is the optimal smoothed estimate of the data
α̂. Using ŷ we can then calculate both the optimal control and the optimal initial
condition using the defining equations of the orthogonal complement.

To construct the optimal control u∗ we have from Lemma 2.1 and the identifica-
tions above

u∗(t) = −
N∑

i=1

〈ŷ − α̂, ei〉Q�i(t)

= −
N∑

i=1

〈(I + GQ + FQ)−1(GQ + FQ)α̂ − α̂, ei〉Q�i(t)

=
N∑

i=1

〈[I − (I + GQ + FQ)−1(GQ + FQ)b]α̂, ei〉Q�i(t)

The construction of the optimal initial condition is carried out in a similar manner.
Thus the lemma is proved.
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We summarize the results of the section with the following theorem.
Theorem 2.4. Let

ẋ = Ax + bu, y = cx

be a controllable and observable linear system with initial data x(0) = x0 and let a
data set be given as

D = {(ti, αi) : i = 1, · · · , N}

and assume that ti > 0 and let T = tN . Let the cost function be given as

J(u, x0) =
∫ T

0

u2(t)dt + (ŷ − α̂)′Q(ŷ − α̂) + x′
0Rx0

where Q and R are positive definite matrices. The vector ŷ has components

yi = y(ti) = ceAtix0 +
∫ ti

0

ceA(ti−s)bu(s)ds

and the vector α̂ has components αi. Minimizing J over u ∈ L2[0, t] and x0 ∈ R
n we

have that the optimal smoothed data is given by

(2.7) ŷ = (I + GQ + FQ)−1(GQ + FQ)α̂,

the optimal control is given by

(2.8) u =
N∑

i=1

〈[I − (I + GQ + FQ)−1(GQ + FQ)]α̂, ei〉Q�i,

and the optimal initial condition is given by

(2.9) x0 =
N∑

i=1

〈[I − (I + GQ + FQ)−1(GQ + FQ)]α̂, ei〉Qβi

3. The basic algorithm. In the above section we have formulated and solved
a problem using an algorithm based on the development in Luenberger [7] and that
is, in some sense, just an implementation of the projection theorem from the general
theory of Hilbert space. This algorithm is extremely powerful. We will see in this
paper many problems in optimal control that can be solved by using this algorithm.
We will now state the algorithm with some explanation. We begin by describing the
inputs and outputs of the algorithm.
INPUTS:

• a quadratic cost function in the control, possibly the initial data and in the
data;

• a given set of constraints that include a linear control system and determin-
istic constraints on the solution of the control system and the initial data.
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OUTPUTS:

• smoothing data ŷ;
• optimal control u;
• optimal initial data x0.

The algorithm

1. Define the Hilbert space of the control, initial data and data as H = H1 ×
H2×H3 where H1 is the Hilbert space of the control, H2 is the Hilbert space
of the initial data,finite dimensional and H3 is the Hilbert space of the data
which may be finite or infinite dimensional. The norm is based on the cost
functional.

2. Define the affine subvariety Vc of the constraints. In many of the applications
c is replaced by the parameter from the problem, for example 0 or h.

3. Define the data as a point p in H.
4. Verify that the variety is well defined in the Hilbert space. Verify that any

point evaluations are well defined. For example if f ∈ L2[0, T ] then the value
f(1) may not well defined unless it is defined in terms of the inner product.

5. Verify that the variety is closed. This is an essential step but usually in these
problem is a consequence of the closed graph theorem.

6. Calculate the orthogonal complement of V0. This step may or may not com-
plicated. It is usually straight forward.

7. Calculate the intersection of (V ⊥
0 + p) ∩ Vc. This step can be complicated

because it reduces to solving a system of Linear equations derived from the
definitions of Vc and V ⊥

0 or V ⊥
0 + p. The equations can be a mix of integral

equations and finite dimensional linear equations and may involve several
parameters that must be eliminated.

8. The solution to the equations exist and is unique since we know that the
intersection will contain a single point. This point is the optimal u, x0 and
the optimal output of the linear system.

This paper is an exercise in applying this algorithm to solve a series of important
problems in the theory of control theoretic smoothing splines. There are of course
other methods of solving these problems. However, no other method seems as straight
forward and as intuitive. It is basically just a generalization of the problem from
euclidian geometry of finding a point on a given line nearest to a given point in the
plane–a problem from high school geometry. The process is described by Figure (1).
Note that in some problems p = 0 and these problems reduce to finding a point of
minimum norm in an affine subvariety. See [7] for many such examples.

4. Interpolating splines with initial data. For interpolating splines we are
required to find a control that drives the output y through the points in the data set
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Fig. 1. The general process for finding the point on an affine variety (Vα) in a Hilbert space

closest to a given data point (p).

D. This can be expressed in terms of additional constraints of the form

αi = 〈βi, x0〉R + 〈�i, u〉L

for i = 1, · · · , N . The goal is to find a control and an initial condition that minimizes

J(u, x0) =
∫ T

0

u2(t)dt + x′
0Rx0

subject to the constraints. Just as for smoothing splines we define the Hilbert space
to be

H = L2[0, T ]× R
n.

Now the affine variety of constraints is given by

Vα̂ = {(u; x0) : 0 = −αi + 〈βi, x0〉R + 〈�i, u〉L, i = 1, · · · , N}.

Here the goal is to find the point in Vα̂ of minimum norm. The procedure is much
the same as for smoothing splines. We first must verify that Vα̂ is nonempty. This
follows from the hypothesized controllability of the linear system. We construct V ⊥

0

and construct the intersection

V ⊥
0 ∩ Vα̂,

which consists of a single point, [7], provided that V0 is closed.

Lemma 4.1. V0 is closed.

Proof. Define Fi(x, w) = 〈βi, x〉R + 〈�i, w〉L. Now Fi is a continuous linear
functional on the Hilbert space H and hence the ker(Fi) is a closed subset of H. Now
V0 is the intersection of a finite number of closed subsets and hence is closed.
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After some calculation we have

V ⊥
0 = {(v; w) : v =

N∑
i=1

τi�i, w =
N∑

i=1

τiβi}.

After some more calculation we have that the optimal u is in fact given by

u =
N∑

i=1

e′i(F + G)−1α̂�i,

and the optimal initial condition is given by

x0 =
N∑

i=1

e′i(F + G)−1α̂βi.

the matrices F and G, the vectors βi and the elements of L2[0, T ], �i(t) are as in the
previous section. This is just a slight generalization of the construction given in [14]
and hence the details are left out.

For cubic splines the classical construction reduces to solving a system of equations
of the form Λx = ρ where Λ is tridiagonal and of course this a much faster procedure.
In [16] the construction of interpolating splines is reduced to solving banded matrices.
However, in both cases additional constraints are required to make the problem have
a unique solution. With the procedure developed here the additional constraints are
unnecessary because of the optimization. Neither the classical cubic splines nor the
procedure developed in [16] can easily handle the optimal initial data.

5. Smoothing and estimation for problems with additional hard con-
straints. In a series of papers Willsky and coauthors [1, 2] and Krener [6] considered
an estimation problem based on a stochastic boundary value problem. In this section
we consider a similar problem in which the smoothing spline is generated by linear
system for which there are hard constraints. The constraints may occur as boundary
values but they may also occur as fixed internal values or even as linear operator con-
straints on the solution. We will show that many of these problems can be formulated
and solved with the machinery that we have established. The basic idea is that we
have a data set in which each data point is of the form αi = f(ti) + εi where f(ti)
is deterministic and the εi is the value of random variable. The goal is to produce
a curve (the spline) that better approximates f(t). This is, of course, a standard
statistical assumption, [15].

5.1. Two point boundary value problems. We begin by considering a gen-
eral boundary value problem. Let the boundary condition be given by

(5.1) Φx(0) + Ψx(T ) = h,
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where we let h ∈ R
k. This, of course, includes the classical two point boundary value

formulations and other problems of interest. We note that since

x(T ) = eAT x(0) +
∫ T

0

eA(T−s)bu(s)ds,

the specific dependence on x(T ) can be removed and the boundary constraint simply
becomes

(5.2) Px(0) + Ψ
∫ T

0

eA(T−s)bu(s)ds = h,

where

P := Φ + ΨeAT .

Note that if there is any solution to (5.1) then by the controllability hypothesis there
is a solution to (5.2). We hypothesize that there is at least one solution of (5.1).

We now define the Hilbert space as

H = L2[0, T ]× R
n × R

N

with norm

‖(u; x0; y)‖2 =
∫ T

0

u2(t)dt + x′
0Rx0 + y′Qy.

We define the constraint variety to be

Vh = {(u; x; d) : di = 〈βi, x〉R + 〈�i, u〉L, Px + Ψ
∫ T

0

eA(T−s)bu(s)ds = h}.

We first prove the following lemma.
Lemma 5.1. V0 is a closed subspace of H.
Proof. The mapping

(u; x) → Ψ
∫ T

0

eA(T−s)bu(s)ds + Px,

with domain L2[0, T ]× R
n is continuous and hence the subspace

W = {(u, x) ∈ L2[0, T ]× R
n : Px + Ψ

∫ T

0

eA(T−s)bu(s)ds = 0}

is closed. Now the mapping from W to RN defined by

di = 〈βi, x〉R + 〈�i, u〉L

is continuous and again we appeal to the closed graph theorem to finish the proof.
We now construct V ⊥

0 .
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Lemma 5.2. For some λ ∈ R
k,

V ⊥
0 = {(v; w; z) : w = −

N∑
i=1

〈z, ei〉Qβi + R−1P ′λ, v = −
N∑

i=1

〈z, ei〉Q�i + (ΨeA(T−t))′λ}.

Proof. The first part of the construction is exactly the same as in subsection 2.2
and from there we have

V ⊥
0 = {(v; w; z) : 〈w +

N∑
i=1

〈z, ei〉Qβi, x〉 + +〈v +
N∑

i=1

〈z, ei〉Q�i, u〉 = 0}.

Now the relationship does not hold for all x and u but only for those x and u for
which equation (5.2) holds. Multiplying by λ′, λ ∈ R

k, we can rewrite equation (5.2)
as

(5.3) 〈R−1P ′λ, x〉R + 〈(ΨeA(T−t))′λ, u〉L = 0.

From this we conclude that

w +
N∑

i=1

〈z, ei〉Qβi = R−1P ′λ,

and

v +
N∑

i=1

〈z, ei〉Q�i = (ΨeA(T−t))′λ,

and the lemma follows.
It remains to construct the intersection Vh ∩ (V ⊥

0 + p) to find the optimal point.
This construction is technically more complicated than the simple smoothing spline
but the technique is identical.

The unique point in the intersection is defined as the solution of the following
system of four equations in the unknowns u, x0, y and λ, obtained by identifying x

and w with x0, d with ŷ, and z with ŷ + α̂ .

u = −
N∑

i=1

〈ŷ − α̂, ei〉Q�i + b′eA′(T−t)Ψ′λ,(5.4)

x0 = −
N∑

i=1

〈ŷ − α̂, ei〉Qβi + R−1(Φ + ΨeAT )′λ,(5.5)

h = Px0 +
∫ T

0

ΨeA(T−s)bu(s)ds,(5.6)

yi = 〈βi, x0〉R + 〈�i, u〉L.(5.7)

We begin by eliminating x0 and u from equation (5.7) by substituting equations (5.4)
and (5.5). After some manipulation we have

yi = e′iG(ŷ − α̂) − e′iF (ŷ − α̂) + β′
iP

′λ +
∫ T

0

�i(s)b′eA′(T−s)Ψ′dsλ.
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Since βi = R−1eA′tic′ let

β = R−1(eA′t1c′, · · · , eA′tN c′) =: R−1E

to obtain

ŷ = −G(ŷ − α̂) − F (ŷ − α̂) + E′R−1P ′λ + Λλ,

where

Λ =
∫ T

0

l(s)b′eA′(T−s)Ψ′ds.

We will now use equation (5.6) to obtain a second equation in λ and ŷ.

h =P
[
−

N∑
i=1

〈ŷ − α̂, ei〉Qβi + R−1P ′λ
]
+

+
∫ T

0

ΨeA(T−s)b
[
−

N∑
i=1

〈ŷ − α̂, ei〉Q�i + b′eA′(T−s)Ψ′λ
]
ds.

We make the following observation:

N∑
i=1

〈ŷ − α̂, ei〉Qβi =
N∑

i=1

βie
′
iQ(ŷ − α̂) = R−1EQ(ŷ − α̂).

We now define

M =
N∑

i=1

∫ T

0

ΨeA(T−s)b�i(s)e′idsQ,

and hence

N∑
i=1

∫ T

0

ΨeA(T−s)b〈ŷ − α̂, ei〉Q�i(s)ds = M(ŷ − α̂).

Using these two constructions we then have

(5.8) h = P (−R−1EQ(ŷ − α̂)) + PR−1P ′λ −−M(ŷ − α̂) + ΨΓΨ′λ,

where Γ is the controllability Grammian

Γ =
∫ T

0

eA(T−s)bb′eA′(T−s)ds.

By combining these two expressions linking ŷ and λ gives the following linear
equation system

(5.9)

(
I + (G + F )Q −E′R−1P ′ − Λ
PR−1EQ − M PR−1P ′ + ΨΓΨ′

)(
ŷ

λ

)
=

(
(G + F )Qα̂

h + PR−1EQ + Mα̂

)
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where Γ is the controllability Grammian

Γ =
∫ T

0

eA(T−s)bb′eA′(T−s)ds.

Using equation (5.9) we can solve for ŷ and for λ. These values can be used in
equations (5.4) and (5.5) to uniquely determine the optimal control and the optimal
initial condition. As before we see that the optimal estimate of the data is obtained
independently of the control.

Remark:The matrix E is a Grammian like matrix that determines if the initial data
can be recovered from sampled observational data, i.e. if ẋ = Ax, x(0) = α, y = cx

and the output is sampled at a set of discrete points ti then the output is recoverable
from these observations if and only if E has full rank. Thus E plays the same role as
the observability Grammian. There are no known necessary and sufficient conditions
for E to have full rank. This problem was studied originally by Smith and Martin and
was reported in [13]. It is also interesting that the controllability Grammian arises in
the formulation of the equation (5.8). The reason for the controllability Grammian to
appear is more obvious when one considers the simpler problem of optimally moving
between affine subspaces. This problem is studied in [20].

5.2. Multiple point constraints. In this case we have a hard constraint of the
form

Φ1x(r1) + · · · + Φkx(rk) = h

and the data set

D = {(ti, αi) : i = 1, · · · , N}

and we assume without loss of generality that

{ri : i = 1, · · · , k} ∪ {ti : i = 1, · · · , N} = ∅.

We again make the assumption that there exist at least one set of vectors ai such that

Φ1a1 + · · · + Φkak = h.

We construct the variety of constraints and note that we can replace x(ri) with

eArix(0) +
∫ ri

0

eA(ri−s)bu(s)ds.

Thus the constraint depends only on u and x0. We use the Hilbert space

H = L2[0, T ]× R
n × R

N .
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The constraint variety is

Vh = {(u; x0; ŷ) : yi = 〈βi, x0〉 + 〈�i, u〉L,

k∑
i=1

Φie
Arix0 +

k∑
i=1

∫ T

0

Φi�ri(s)u(s)ds = h}.

As before we construct the orthogonal complement to V0 and then determine the
intersection

Vh ∩ (V ⊥
0 + (0; 0; α̂)).

We leave this construction to the reader.

5.3. Examples. In this section we will present some examples of problems that
fit this generalized boundary value formulation. We let

A =

(
0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
, T = 1

t1 = 0.2, t2 = 0.3, t3 = 0.5, t4 = 0.7, t5 = 0.8

α̂ =
(
0.8 0.2 0.5 1 0.3

)
Q = 104I5, R = 104I2, (Ip = p × p identity matrix).

Example 4 (Periodic splines).
We first study the situation when we insist that x(0) = x(T ). In this case we have
that Φ = −Ψ = I2, while h = 0. The solution is depicted in Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Fig. 2. Periodic splines: Here the boundary value is given by x(0) = x(T ). Depicted are y(t)

(solid) and αi, i = 1, . . . , 4 (stars).

Example 5 (Two point boundary value problems).
We now let the boundary constraint be encoded by Φ =

(
1 1

)
, Ψ = −Φ, h = 1,

which implies that the boundary values are given by the set

{(x0, xT ) | (1, 1)x0 − (1, 1)xT = 1}.
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The solution is given in Figure 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Boundary value problem: (1, 1)x(0) − (1, 1)x(T ) = 1.

5.4. Integral constraints. In many applications ranging from statistics to med-
ical there are constraints of the form∫ 1

0

y(t) dt = 1.

We will consider a simple problem with ẋ = Ax + bu and a data set D = {(ti, αi) :
i = 1, · · · , N} and we will further assume that each αi > 0. Our constraint variety is
given by

V1 = {(u; x0; y) : yi = 〈βi, x0〉 + 〈�i, u〉, 1 =
∫ T

0

y(t)dt, y(t)

= ceAtx0 +
∫ t

0

eA(t−s)bu(s)ds}.

As per the algorithm we compute V ⊥
0 . The definition of the orthogonal complement

gives

V ⊥
0 = {(v; w, z) : 〈v, u〉 + 〈w, x0〉R + 〈z, y〉q = 0, ∀(u; x0, y) ∈ V0}.

Using the defining relation after some calculation using the first relationship in the
definition of V0 we have

(5.10) 〈v +
N∑

i=1

〈z, ei〉Q�i, u〉 + 〈w +
N∑

i=1

〈z, ei〉Qβi, x0〉 = 0.

From the second and third defining relations for V0 we have

0 =
∫ T

0

(eAtx0 +
∫ t

0

eA(t−s)bu(s)ds)dt

=
∫ T

0

eAtdtx0 +
∫ T

0

∫ T

s

eA(t−s)bdtu(s)ds
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Multiplying both sides by λ we have

(5.11) 0 = 〈
∫ T

0

R−1eA′tdtλ, x0〉 + 〈
∫ T

s

b′eA(t−s)dtλ, u〉.

Now using equations (5.10) and V ⊥
0 .

V ⊥
0 ={(v : w; z) : v = −

N∑
i=1

〈z, ei〉Q�i +
∫ T

s

b′eA(t−s)dtλ,

w = −
N∑

i=1

〈z, ei〉Qβi +
∫ T

0

R−1eA′tdtλ}.

Let p = (0; 0; α) where α is the vector of data.
Then in order to construct (V ⊥

0 +p)∩V1 we must solve the following four equations.

yi =〈βi, x0〉 + 〈�i, u〉(5.12)

1 =
∫ T

0

eAtdtx0 +
∫ T

0

∫ T

s

eA(t−s)bdtu(s)ds(5.13)

u = −
N∑

i=1

〈y + α, ei〉Q�i +
∫ T

s

b′eA(t−s)dtλ(5.14)

x0 = −
N∑

i=1

〈y + α, ei〉Qβi +
∫ T

0

R−1eA′tdtλ(5.15)

The procedure for solving these four equations is exactly the same as before and
we leave the details to the reader. Use equations (5.14) and (5.15) to eliminate x0

and u from equations (5.12) and (5.13). This results in a pair of equations for λ and
the optimal y. Solve this system and substitute these values to obtain the optimal u

and x0. After some calculation the problem of finding the optimal y and λ reduces to
solving a matrix equation. The entries in the matrix must be calculated separately
and involve some integration that can be done using standard quadrature algorithms.
One y and λ are found then u and x0 are found by substituting into equations (5.14)
and (5.15).

6. Continuous data. In the previous sections we developed machinery for con-
structing smoothing splines with discrete data, both deterministic and random. How-
ever there are many problems for which the data is continuous. EKG, ECG and EMG
are primary examples for which there is a continuous data stream and often there are
aspects of the data that are hidden by complexity of the stream. Smoothing splines
are an excellent tool to recover such data. In [5] smoothing splines based on B-splines
were used to recover long term trends in the stock market. In [17] it was shown that
discrete smoothing splines are well approximated by continuous filters which amounts
to using continuous data. In this section we will develop a Hilbert space approach for
smoothing continuous data with and without additional deterministic discrete data.
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6.1. The linear quadratic regulator problem. To establish the technique we
will solve the linear quadratic regulator problem and then will use the construction
for the smoothing problems. This construction is basically the same as is given in
Doolin and Martin [3]. We are given a cost function

J(u) =
∫ T

0

x′(t)Qx(t) + u2(t)dt

and a controllable linear system

ẋ = Ax + bu, x(0) = x0

and we assume that x0 is given. We also assume that the matrix Q is positive definite.
We define a Hilbert space

H = L2[0, T ]× Ln
2 [0, T ]

with norm

‖(u; x)‖2 =
∫ T

0

x′(t)Qx(t) + u2(t)dt,

where Ln
2 [0, T ] := L2[0, T ]× · · · × L2[0, T ]︸ ︷︷ ︸

n times

. Let the constraint variety be defined as

Vx0 = {(u; x) : x(t) = eAtx0 +
∫ t

0

eA(t−s)bu(s)ds}.

Note again that V0 is closed by the closed graph theorem. It is seen, as for the discrete
case, that we minimize the cost function by finding the point of minimum norm in
Vx0 . Thus we construct the orthogonal complement of V0. We have

V ⊥
0 = {(v; w);

∫ T

0

x′(t)Qw(t) + u(t)v(t)dt = 0, ∀(u, ; x) ∈ V0}.

Using this definition we have

0 =
∫ T

0

x′(t)Qw(t) + u(t)v(t)dt

=
∫ T

0

w′(t)Q(
∫ t

0

eA(t−s)bu(s)ds) + u(t)v(t)dt

=
∫ T

0

∫ T

s

w′(t)Q(eA(t−s)bu(s)dtds +
∫ T

0

u(s)v(s)ds

=
∫ T

0

(∫ T

s

w′(t)QeA(t−s)bdt + v(s)

)
u(s)ds

Thus we have

V ⊥
0 = {(v; w) : v(s) = −

∫ T

s

b′eA′(t−s)Qw(t)dt}.
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In order to find the intersection Vx0 ∩ V ⊥
0 we must solve the following system of two

integral equations.

x(t) =eAtx0 +
∫ t

0

eA(t−s)bu(s)ds(6.1)

u(s) = −
∫ T

s

b′eA′(t−s)Qx(t)dt(6.2)

To solve this system we let u = −b′λ and from equation (6.2) we have

λ =
∫ T

t

eA′(r−t)Qx(r)dr

and from equation (6.1) we have

x(t) = eAtx0 −
∫ t

0

eA(t−s)bb′λds.

Differentiating these two equations we have the standard Hamiltonian formulation of
the optimal control problem.

(6.3)
d

dt

(
x(t)
λ(t)

)
=

(
A −bb′

−Q −A′

)(
x(t)
λ(t)

)
,

(
x(0)
λ(T )

)
=

(
x0

0

)
.

The solution of the equation then is done by introducing the Riccati transform. See
for example [3] or any elementary control text.

6.2. Continuous data. As before we use a linear system

ẋ = Ax + bu, y = cx, x(0) = x0

as the spline generator. Without loss of generality we assume that b′b = 1. We assume
we are given as our data a function

f(t) = g(t) + ε(t),

where g(t) is true underlying function and ε(t) is a represents random error. We do
not need to know how the function ε is generated. We further assume that f and g

and hence ε are square integrable.
We seek to minimize the following cost function. This problem is solved in great

detail in [17].

J(u, x0) =
∫ T

0

u2(t)dt + x′
0Rx0 +

∫ T

0

(y(t) − f(t)2)dt.

We define a Hilbert space H = L2[0, T ]× R
n × L2[0, T ] with inner product

〈(u; x; g), (v; w; h)〉 =
∫ T

0

u(t)v(t)dt + x′Rw +
∫ T

0

g(t)h(t)dt,
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and norm

‖(u; x; g)‖2 =
∫ T

0

u2(t)dt + x′Rx +
∫ T

0

g2(t)dt.

Define the constraint variety to be

Vx0 = {(u(t), x0, y(t)) : y(t) = ceAtx0 +
∫ t

0

ceA(t−s)bu(s)ds}

and the data point to be p = (0; 0; f(t)). Note that V0 is closed. The optimization
problem is seen to be solved by finding the point in Vx0 that minimizes the distance
to the data point p.

In order to find this point we first construct the orthogonal complement of V in
H. Now by definition we have

V ⊥
0 = {(v; w; z) ∈ H : 〈u, v〉 + x′

0Rw + 〈y, z〉 = 0}.

Using this definition and the definition of y we have the following

0 =〈u, v〉 + x′
0Rw + 〈y, z〉β

=
∫ T

0

u(s)v(s)ds + x′
0Rw +

∫ T

0

(eAtx0 +
∫ t

0

ceA(t−s)bu(s))dsz(t)dt

=
∫ T

0

u(s)v(s)ds + x′
0Rw +

∫ T

0

(ceAtx0z(t)dt +
∫ T

0

∫ T

s

ceA(t−s)bz(t)dtu(s)ds

=
∫ T

0

u(s)[v(s) +
∫ T

s

ceA(t−s)bz(t)dt] + x′
0R[w +

∫ T

0

eA′tc′z(t)dt]

From this we conclude that

(6.4) V ⊥
0 = {(v; w; z) : v(s) = −

∫ T

s

ceA(t−s)bz(t)dt, w = −
∫ T

0

eA′tc′z(t)dt}.

To find the point of intersection of

(V ⊥ + p) ∩ V

we must solve the following three equations.

y(t) = ceAtx0 +
∫ t

0

ceA(t−s)bu(s)ds(6.5)

u(s) = −
∫ T

s

ceA(t−s)b(y(t) + f(t))dt(6.6)

x0 = −
∫ T

0

eA′tc′(y(t) + f(t))dt(6.7)

Now as in the solution of the regulator problem we let

(6.8) u = −b′λ
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and from equation (6.5) and (6.8) we have

x(t) = eAtx0 −
∫ t

0

eA(t−s)bb′λds

and from equation (6.6) we have

λ =
∫ T

s

b′beA′(t−s)c′cx(t)dt +
∫ T

s

b′beA′(t−s)c′f(t))dt,

using our assumption that b′b = 1 we have the equation

λ =
∫ T

s

eA′(t−s)c′cx(t)dt +
∫ T

s

eA′(t−s)c′f(t))dt.

Differentiating these two equations we have the following system of equations

(6.9)
d

dt

(
x(t)
λ(t)

)
=

(
A −bb′

−c′c −A′

)(
x(t)
λ(t)

)
−
(

0
c′

)
f(t),

(
x(0)
λ(T )

)
=

(
x0

0

)

Thus we have a forced Hamiltonian that governs the solution. This was noted and
solved in [14]. It remains to find the optimal x0. This will be done by calculating y(t)
from the solution of the forced Hamiltonian. We make a change of variables defined
by (

x

w

)
=

(
I 0

P (t) I

)(
x

λ

)

Making the change of variables we have

(6.10)
d

dt

(
x(t)
w(t)

)
=

(
A + b′bP (t) −bb′

R(t) −(A + bb′P (t))′

)(
x(t)
w(t)

)
−
(

0
c′

)
f(t),

where

(6.11) R(t) = Ṗ + PA + A′P + Pbb′P − c′c.

We now set R(t) = 0 and let P (T ) = 0 so that w(T ) = 0. Thus we have the standard
Riccati equation for the linear optimal control problem of minimizing

J(u) =
∫ T

0

x′c′cx + ubb′udt.

We have by solving this system of differential equations the optimal y(t) and u(t).
it remains to find the optimal initial condition. We first solve and store the solution
to the Riccati equation P (t). We are guaranteed a unique solution since the system
was assumed to be observable and controllable. We then integrate the linear system

ẇ = −(A + bb′P (t))′w − c′f
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to obtain

w(t) = −
∫ T

t

φ(s, t)c′f(s)ds

and therefore we have

x(t) = −
∫ t

0

φ(t, v)
∫ T

v

φ(r, v)c′f(r)drdv + φ(t, 0)x0

and hence

(6.12) y(t) = −
∫ t

0

cφ(t, v)
∫ T

v

φ(r, v)c′f(r)drdv + cφ(t, 0)x0

From equation (6.6) we have

(6.13)
u(s) =

∫ T

s

∫ s

0

∫ T

v

ceA(t−s)bcφ(s, v)φ(r, v)c′f(r)drdvdt

−
∫ T

s

ceA(t−s)bf(t)dt −
∫ T

s

ceA(t−s)bcφ(s, 0)x0dt.

Thus we see that u feeds back the data function f and the optimal x0 and from
equation (6.7) we see that the optimal initial data is likewise a function of the data.

x0 = −
∫ T

0

eA′tc′(−
∫ t

0

cφ(t, v)
∫ T

v

φ(r, v)c′f(r)drdv+f(t))dt−
∫ T

0

eA′tc′cφ(t, 0)dtx0

and hence we have

(
∫ T

0

eA′tc′cφ(t, 0)dt + I)x0

= −
∫ T

0

eA′tc′(−
∫ t

0

cφ(t, v)
∫ T

v

φ(r, v)c′f(r)drdv + f(t))dt.

The matrix multiplier of x0 is invertible since the solution is guaranteed to exist and
to be unique from the Hilbert space formulation.

6.3. Deterministic constraints. In this subsection we consider the above
problem with additional constraints at specific points,

M∑
i=0

Φix(ti) = h

and we assume that tM = T . This includes various forms of the boundary value
problem (M = 1), various forms of the initial value problem (M = 0) and the problems
with constraints at internal points. We are given a measured function and the desire
is to approximate it by y(t) subject to the constraints. It is possible to add other
constraints such as constraints on integrals of y. In this case the operators Φ are
integral operators on x(t). However in this paper we will assume that the Φ are
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matrices. We must verify that there is a solution (a1, · · · , aM ) of the constraint
equation. If there is a solution then by controllability there is a control u that drives
the system through the points.

We first note that the constraint
M∑
i=0

Φix(ti) = h can be reduced to a constraint

on u and x0.

h =
M∑
i=0

Φi(eAtix0 +
∫ ti

0

eA(ti−s)bu(s)ds

=

(
M∑
i=0

Φie
Ati

)
x0 +

∫ T

0

(
M∑
i=0

Φie
A(ti−s)I[0,ti)(s)b

)
u(s)ds

=Φx0 +
∫ T

0

Λ(t)bu(t)dt(6.14)

where

Φ =
M∑
i=0

Φie
Ati

and

Λ(s) =
M∑
i=0

Φie
A(ti−s)I[0,ti)(s),

where I[0,ti)(s) equals 1 if s ∈ [0, ti) and 0 otherwise. We see that this problem has
the same complexity as the two point boundary value problem.

Thus we have the constraint variety defined as

Vh = {(u; x0; y) : y(t) = ceAtix0 +
∫ t

0

ceA(t−s)bu(s)ds, h = Φx0 +
∫ T

0

Λ(t)bu(t)dt}.

Following the previous sections we find

V ⊥
0 = {(v; w; z) : v(s) = −

∫ T

s

ceA(t−s)bz(t)dt + b′Λ′λ,

w = −
∫ T

0

eA′tc′z(t)dt + R−1Φ′λ}.

To find the intersection (V ⊥
0 +p)∩Vh we solve the following system of four equations.

y(t) =ceAtix0 +
∫ t

0

ceA(t−s)bu(s)ds(6.15)

h =Φx0 +
∫ T

0

Λ(t)bu(t)dt(6.16)

u(t) = −
∫ T

t

ceA(r−t)b(y(r) + f(r))dr + b′Λ′(t)λ(6.17)

x0 = −
∫ T

0

eA′tc′(y(t) + f(t))dt + R−1Φ′λ(6.18)
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Letting

(6.19) u(t) = −b′γ(t).

We have after some manipulation of equations (6.15) and (6.17)

x(t) =eAtix0 +
∫ t

0

eA(t−s)bb′γ(s)ds,(6.20)

γ(t) = −
∫ T

t

eA′(r−t)c′(y(r) + f(r))dr + Λ′(t).λ(6.21)

Differentiating equations (6.20) and (6.21) we have the system of differential equations

(6.22)
d

dt

(
x(t)
γ(t)

)
=

(
A −bb′

−c′c −A′

)(
x(t)
γ(t)

)
−
(

0
c′

)
f(t)

with boundary conditions

x(0) = x0 and γ(T ) = 0.

As in the previous subsection we make the Riccati transform,(
x

w

)
=

(
I 0

P (t) I

)(
x

λ

)
,

to obtain

(6.23)
d

dt

(
x(t)
w(t)

)
=

(
A + b′bP (t) −bb′

0 −(A + bb′P (t))′

)(
x(t)
w(t)

)
−
(

0
c′

)
f(t),

where

(6.24) Ṗ = −PA − A′P − bb′P + c′c, P (T ) = 0.

From this point the problems is exactly the same as for the two point boundary value
problem and we leave the final construction as an exercise for the reader.

7. Conclusion. In this paper we have established a common framework for
interpolating splines and smoothing splines via a Hilbert space approach to control
theoretic splines. We have demonstrated that control theoretic splines can be used to
solve a wide variety of problems. While Willsky and colleagues, [1, 2], and Krener, [6],
developed beautiful machinery based on very sophisticated stochastic analysis to solve
estimation problems based on stochastic two point boundary value problems we have
shown that the same problems have elegant and simple solutions based on control
theoretic splines. Smoothing splines have along and illustrious history in statistics
thanks to the pioneering work of Grace Wahba, [15], and interpolating splines date
back to Shoenberg’s seminal paper in 1946, [10] in theory and to the early 1960s in
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practice. We have been able to show that there is a common framework. Furthermore
we have been able to solve a series of problems that involve constraints on the spline
and/or the data.

We recognize that not all of the interesting spline problems fall into this Hilbert
space formulation. If there are inequality constraints on the spline or its derivative
on entire intervals then we are forced to use other formulations. For example, the
approach of this paper is not really suitable for monotone smoothing splines or for
splines that are required to be in certain interval at the node points. These problems
require more sophisticated algorithms and have been studied by Egerstedt, Martin,
Sun and Zhou in several papers, for example in [8, 14, 19].
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