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RISK SENSITIVE STOCHASTIC CONTROL AND DIFFERENTIAL

GAMES

WENDELL H. FLEMING∗

Abstract. We give a concise introduction to risk sensitive control of Markov diffusion pro-

cesses and related two-controller, zero-sum differential games. The method of dynamic programming

for the risk sensitive control problem leads to a nonlinear partial differential equation of Hamilton-

Jacobi-Bellman type. In the totally risk sensitive limit, this becomes the Isaacs equation for the

differential game. There is another interpretation of the differential game using the Maslov idempo-

tent probability calculus. We call this a max-plus stochastic control problem. These risk sensitive

control/differential game methods are applied to problems of importance sampling for Markov dif-

fusions.

1. Introduction. The purpose of this paper is to give a concise introduction to

risk sensitive control of Markov diffusion processes and related two controller, zero

sum differential games. For simplicity, we consider only risk sensitive control on a

fixed finite time horizon. Our formulation is the same as in the book [FS, Chaps. 6

and 11], to which the reader is referred for a more detailed treatment. References

[FM2] and [N] are concerned with risk sensitive control on an infinite time horizon.

To motivate the discussion to follow, we begin in Section 2 with an elementary

discussion of static optimization. In the risk sensitive stochastic optimization formu-

lation, one seeks to minimize the certainty-equivalent expectation of some criterion

J . This depends on a risk sensitivity parameter θ. In the limit θ → ∞, the risk

sensitive stochastic optimization problem becomes a deterministic min-max problem.

This limiting problem has a kind of “stochastic” interpretation in terms of the Maslov

idempotent probability calculus.

In Section 3 we review the dynamic programming approach to risk sensitive con-

trol of Markov diffusions on a finite time interval. The state of the process being

controlled satisfies the stochastic differential equation (3.1), depending on a parame-

ter ǫ which indicates the intensity of random noise inputs to the state dynamics. The

risk sensitivity parameter is θ = ǫ−2. Dynamic programming leads to the Hamilton-

Jacobi-Bellman (HJB) partial differential equation. When written in certainty equiv-

alent form, this is equation (3.5). Under suitable assumptions a unique solution to

(3.5) with the boundary data (3.7) exists in either the classical or the viscosity solution

sense.

In Section 4 we consider the totally risk sensitive limit ǫ → 0. This leads to

∗Brown University, Division of Applied Mathematics, Box F / 182 George Street, Providence, RI

02912. E-mail: whf@cfm.brown.edu

161



162 WENDELL H. FLEMING

a differential game, with state dynamics (4.1). In these game dynamics, the ran-

dom (Brownian motion) input to the SDE (3.1) is replaced by a disturbance control

function chosen by a maximizing controller. This is an approach taken in nonlinear

H∞-control theory [BB][HJ]. As ǫ → 0 the certainty-equivalent value function V ǫ in

the risk sensitive stochastic control problem tends to the upper value function V + for

the differential game. This upper value function satisfies an Isaacs partial differential

equation in the viscosity sense.

In Section 5, another interpretation of the differential game in Section 4 is given,

in terms of the Maslov idempotent probability calculus. We call this a “max-plus

stochastic control problem.” We discuss the problem of finding suitable classes of

minimizing control strategies for the max-plus formulation. These strategies should

have a role similar to progressively measurable controls in the usual stochastic model

for controlled Markov diffusion. One such class, called Γ1 in Section 5, consists of

strategies which are “strictly progressive.” Since the definition (5.4) of strictly pro-

gressive is not very intuitive, it would be interesting to describe other choices for

Γ1.

Importance sampling is a technique which involves changes of probability measure

to reduce the variance in Monte Carlo estimation. In Sections 6 and 7 we outline an

approach to importance sampling due to Dupuis and Wang, as it applies to Markov

diffusion processes. In this case, the change of probability measure corresponds to

a change of drift in the stochastic differential equation which governs the diffusion

process dynamics. In principle, the variance can be reduced to 0 (see Theorem 6.1).

However, this result is generally not helpful in applications, since it depends on solving

the backward PDE (6.6) for the expectation of the random variable being estimated by

Monte Carlo. Instead, the importance sampling problem is reformulated as a risk sen-

sitive stochastic control problem of the type in Section 3. In Section 7 we outline the

Dupuis-Wang method for obtaining nearly optimal changes of probability measure us-

ing approximate supersolutions to the Isaacs PDE for this differential game. Detailed

descriptions of this method and applications of it appear in [DW1][DW2][DSW].

The author wishes to thank Hui Wang for helpful suggestions.

2. Static optimization. Let us begin by contrasting, at an abstract level,

stochastic and deterministic (min-max) approaches to optimization. To simplify the

presentation, we consider in this section “static” problems, in which time plays no role.

In the abstract formulation, u denotes a control, v an uncertainty (or disturbance)

and J = J (u, v) some criterion.

In a stochastic optimization model, v is “random.” Thus v ∈ Ω, where (Ω,F , P )

is some probability space.

The traditional stochastic optimization objective is to choose u which minimizes
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the expectation

(2.1) J = E(J ) =

∫

Ω

J (u, v)P (dv).

In contrast, the traditional min-max approach is to choose u to minimize max
v

J (u, v).

(In this section, the discussion is heuristic. Thus, we omit assumptions needed to

ensure integrability, existence of maxima and minima, etc.)

Modified min-approach. The traditional min-max approach is ultraconserva-

tive. In taking this approach, the minimizing controller is guarding against all possible

uncertainties v which are considered “equally likely.” A less conservative approach

is to introduce a function q(v) which measures the “likelihood” of v. The modified

min-max problem is to choose u which minimizes the max over v of J (u, v) + q(v).

Let

(2.2) V = min
u

max
v

[J (u, v) + q(v)].

If the min occurs at u = u∗ and the max at v = v∗(u), then the following inequalities

express the saddle point property:

(2.3) V ≥ J (u∗, v) + q(v) ∀v

(2.4) V ≤ J (u, v∗(u)) + q(v∗(u)) ∀u.

Risk-sensitive minimization. A link between stochastic and deterministic

viewpoints is provided by considering risk-sensitive stochastic optimization. Let F (z)

be a smooth function, such that

(2.5) F ′(z) > 0, |F ′′(z)| 6= 0.

The risk-sensitive stochastic optimization problem is to choose u which minimizes the

expectation E[F (J )], rather than the traditional criterion E(J ).

The certainty-equivalent expectation E(J ) is defined by

(2.6) E(J ) = F−1(E[F (J )]).

In this paper, we consider only exponential functions F :

(2.7) F (z) = eθz, θ > 0.

The coefficient of risk sensitivity is defined as

(2.8) rF (z) =
|F ′′(z)|

F ′(z)
.
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For the traditional stochastic criterion, F (z) = z. This is the “risk neutral” case.

Large rF (z) indicates a great sensitivity to risk. For the exponential, rF (z) = θ is

constant and hence large θ corresponds to great risk sensitivity. When F is exponen-

tial, then (2.6) and (2.7) give

(2.9) E(J ) = θ−1 log E(eθJ ).

For simplicity, let us assume in this introductory section that u is chosen from a finite

set and that v also belongs to some finite set. Then u minimizes E[F (J )] if and only

if u minimizes

(2.10) E(J ) = θ−1 log
∑

v

eθJ (u,v)pθ(v)

with pθ(v) the probability of v. Suppose that the dependence on θ is such that

(2.11) lim
θ→∞

θ−1 log pθ(v) = q(v)

where q(v) ≤ 0 and q(v0) = 0 for some “most likely” v0. A version of the Laplace-

Varadhan lemma implies that

(2.12) lim
θ→∞

min
u

E(J ) = V

with V as in (2.2). See for example [FHH, Lemma A.1]. Thus, the modified min-max

problem arises as a limit of the risk sensitive stochastic problem, as the risk parameter

θ → ∞.

This elementary discussion is intended to motivate the discussion of risk sensitive

control of Markov diffusions, and differential game limits in Sections 3 and 4. In the

stochastic model in Section 3, the uncertainty enters via a Brownian motion in the

stochastic differential equation for the state process. In Section 4, the uncertainty is

modelled as a deterministic “disturbance function ” v· in the state dynamics.

The modified min-max approach is non-stochastic in any traditional sense. How-

ever, it does have a kind of “stochastic” interpretation in terms of the Maslov idem-

potent probability calculus [MS]. Let ⊕ and ⊗ denote max-plus addition and multi-

plication:

a ⊕ b = max(a, b) a ⊗ b = a + b.

The max-plus expectation E+(J ) is defined as

E+(J ) = max
v

[J (u, v) + q(v)](2.13)

= ⊕v[q(v) ⊗ J (u, v)].

If q(v) is regarded as the “likelihood” (or “max-plus probability”) of v, then E+(J )

has exactly the same form as the usual expectation E(J ) but with usual arithmetic
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and probabilities replaced by their max-plus counterparts. With these notations, we

can rewrite V in (2.2) as the minimum of max-plus expectations:

(2.14) V = min
u

E+(J ).

We will return to this idea in Section 5.

3. Controlled Markov diffusions. In this section we outline very briefly some

ideas and results about risk sensitive control of Markov diffusions. For detailed treat-

ments see [FS, Sec. 6.8][BN][J][N][FM1,2] and references cited there.

Notations. R
n denotes n-dimensional Euclidean space, and x = (x1, . . . , xn)

denotes a point in R
n. We consider control on a finite interval t ≤ s ≤ T , with t ≥ 0.

Let Q0 = (0, T )×R
n and Q0 the closure of Q0. Let Ck(Rn) denote the space of k times

continuously differentiable functions on R
n, with values in some Euclidean space, and

Ck
b (Rn) the subspace of those f ∈ Ck(Rn) such that f and its partial derivatives

of orders up to k are bounded. Similarly, C1,2(Q) is the space of functions φ(t, x)

such that the partial derivatives ∂φ/∂t, φxi
, φxixj

, i, j = 1, . . . , n are continuous and

C1,2
b (Q) is the subspace of those φ ∈ C1,2(Q) such that φ and these partial derivatives

are bounded. The gradient of φ(t, ·) is denoted by Dxφ and D2
xφ is the matrix of

partial derivatives φxixj
, i, j = 1, . . . , n.

The risk sensitive stochastic control problem is formulated as follows: Let xǫ
s ∈ R

n

denote the state and us ∈ U the control at time s. The state process satisfies the Ito

stochastic differential equation (SDE)

(3.1) dxǫ
s = f(s, xǫ

s, us)ds + ǫσ(s, xǫ
s, us)dws, t ≤ s ≤ T,

with initial data xǫ
t = x. In (3.1), ǫ > 0 is a parameter and w· is a Fs-adapted

Brownian motion of dimension m on some probability space (Ω,FT , P ) with {Fs} an

increasing family of σ-algebras. Let

(3.2) J ǫ =

∫ T

t

L(s, xǫ
s, us)ds + G(xǫ

T )

and in the notation of Section 2 let θ = ǫ−2. The risk sensitive control prob-

lem is to choose a {Fs}-progressively measurable control process u· to minimize

Etx[exp(ǫ−2J ǫ)], where exp denotes the exponential function and the subscript tx

refers to the initial data xǫ
t = x.
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As in [FS, Sec. 6.8] we make the following assumptions:

(3.3)

(a) U ⊂ R
ℓ and U is compact;

(b) f ∈ C1(Q0 × U) and f has bounded first order partial derivatives;

(c) σ, L ∈ C1
b (Q0 × U);

(d) G ∈ C1
b (Rn).

The risk sensitive control problem is to find u. progressively measurable which

minimizes Etx[exp(ǫ−2J ǫ)]. Let φǫ(t, x) denote the value function. The HJB equation

for φǫ is the nonlinear PDE [FS, eqn. 6(8.5)]. It is convenient to rewrite this PDE in

the following certainty-equivalent form. Let V ǫ = ǫ2 log φǫ. Thus V ǫ(t, x)) is the inf

over u· of the certainty-equivalent expectation

(3.4) Etx(J ǫ) = ǫ2 log Etx[exp(ǫ−2J ǫ)].

It turns out that V ǫ does not depend on the particular reference probability system

(Ω, {Fs}, P, w.) in the problem formulation above. See [FS, Sec. 4.2 and 4.7]. In

certainty-equivalent form, the associated HJB equation is (see [FS, eqn. 6(8.12)]):

(3.5)
∂V ǫ

∂t
+ Hǫ(t, x, DxV ǫ, D2

xV ǫ) = 0,

Hǫ(t, x, p, π) = min
u∈U

[

f(t, x, u) · p +
ǫ2

2
tr a(t, x, u)π(3.6)

+
1

2
a(t, x, u)p · p + L(t, x, u)

]

with a = σσ′, π = (πij) any symmetric n× n matrix and tr the trace. The certainty-

equivalent value function V ǫ is the unique bounded, Lipschitz continuous viscosity

solution to (3.4) in Q0 with the boundary data.

(3.7) V ǫ(T, x) = G(x).

See [FS, Secs. 5.9 and 6.8]. Under stronger assumptions, including uniform parabolic-

ity of the HJB equation (3.4), V ǫ satisfies (3.5) in the classical sense. See [FS, Remark

6.8.1]. Moreover, an optimal Markov control policy can be obtained by taking arg min

in (3.6) with p = DxV and π = D2
xV ǫ. See [FS, Section 4.4].

4. Differential game limit. Instead of the risk-sensitive stochastic control

model in Section 3, let us consider the kind of (modified) min-max approach outlined

in Section 2. This approach leads to the following two-player, zero-sum differential
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game. Let xs ∈ R
n denote the game state at time s, which evolves according to the

differential equation

(4.1)
dxs

ds
= f(s, xs, us) + σ(s, xs, us)vs, t ≤ s ≤ T

with initial data xt = x. In (4.1) the minimizing controller (or player) chooses us ∈ U

and the maximizing controller chooses vs ∈ R
m. Note that in (4.1), the formal deriva-

tive ǫdws/ds in the stochastic differential equation (3.1) has been replaced by deter-

ministic vs. In the terminology of H∞-control theory, vs is often called a “disturbance

control.” See [BB][HJ]. Let

(4.2) J (t, x; u., v.) =

∫ T

t

L(s, xs, us)ds + G(xT ),

(4.3) q(v.) = −
1

2

∫ T

t

|vs|
2ds.

This choice of q(v.) is motivated by the theory of large deviations for Brownian motions

[FW]. The differential game payoff is

(4.4) P (t, x; u., v.) = J (t, x; u., v.) + q(v.).

The game description is not yet complete, since the information available to each

controller must be specified. Speaking intuitively, both players know the state xs

when us and vs are chosen. Moreover, the maximizing controller has the advantage of

knowing us when the disturbance control vs is chosen. This is the so-called “upper”

differential game.

There are well known difficulties in making this intuitive formulation precise. To

avoid these difficulties, various rigorous definitions of upper differential game have

been made (using time discretizations, Elliott-Kalton strategies, etc.). Any “reason-

able” definition provides an upper game value V +(t, x), which satisfies in the viscosity

sense the Isaacs PDE

(4.5)
∂V +

∂t
+ H(t, x, DxV +) = 0, (t, x) ∈ Q0,

(4.6) V +(T, x) = G(x),

(4.7) H(t, x, p) = min
u∈U

max
v∈Rm

[

(f(t, x, u) + σ(t, x, u)v) · p + L(t, x, u) −
1

2
|v|2

]

.

We make the same assumptions (3.3) as in Section 3. Then the Elliott-Kalton value

function V + is the unique bounded Lipschitz continuous viscosity solution to (4.5) -

(4.6). See [FS, Sec. 7.11].
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By taking the max over v, we rewrite (4.7) as

(4.7′) H(t, x, p) = min
u∈U

[

(f(t, x, u) · p +
1

2
a(t, x, u)p · p + L(t, x, u)

]

.

with a = σσ′. Thus H(t, x, p) is the limit as ǫ → 0 of Hǫ(t, x, p, π) in (3.6). Viscosity

solution arguments can be used to show that the certainty-equivalent value function

tends to the upper differential game value function as ǫ → 0:

(4.8) V +(t, x) = lim
ǫ→0

V ǫ(t, x),

uniformly on compact subsets of Q0. See [FS, Sec. 11.7].

In addition to the upper value function V +, there is a lower value function V −

which satisfies the PDE corresponding to (4.7) with min max replaced by max min. It

is important to note that V + is obtained in the small-noise (ǫ → 0) limit (4.8), and

not the lower differential game value V −. However, if σ = σ(t, x) does not depend on

the control variable u, then the Isaacs minimax condition min max = maxmin holds

in (4.7). In that case, V + = V −.

In the standard treatment of differential games on a finite interval, the controls

us, vs are constrained to lie in compact sets. See for example [FS, Chap. 11]. We have

assumed that us ∈ U , with U compact. However, vs ∈ R
m and R

m is not compact.

It is shown in [FS, Sec. 11.7] that the upper value V + is the same if the constraint

|v| ≤ R1 is imposed, if R1 is chosen large enough. In fact, one can take R1 = K

where K is a bound for |σ′(t, x, u)p| when |p| ≤ M1 and M1 is a Lipschitz constant

for V +(t, ·).

5. Max-plus stochastic control. In this section we give another interpretation

of the differential game in Section 4, in terms of the Maslov idempotent probability

calculus already mentioned in Section 2. With this interpretation, the upper game

value function V + becomes the value function for what we call a “max-plus stochastic

control problem”.

Let us regard q(v.) defined by (4.3) as the max-plus likelihood of a disturbance

v. ∈ L2([t, T ]; Rm). As in (2.13), the max-plus expectation for initial data xt = x and

J as in (4.2) becomes

(5.1) E+
tx(J ) = sup

v
·

P (t, x; u., v.).

In the max-plus stochastic control problem, we need an analogue of the progressively

measurable control processes used to define the certainty-equivalent value function V ǫ

in the risk sensitive stochastic control problem. This analogue will be a suitably de-

fined class of Elliott-Kalton strategies for the minimizing controller in the differential

game.
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An Elliott-Kalton strategy α for the minimizing controller is a function from

L2([t, T ]; Rm) into L2([t, T ]; U) which is progressive in the following sense: for t < s <

T , vr = ṽr for almost r ∈ [t, s] implies α(v.)r = α(ṽ.)r for almost all r ∈ [t, s]. Let

Γ = Γ(t, T ) denote the class of all Elliott-Kalton strategies α. By the Elliott-Kalton

definition of the lower value and (5.1) with u. = α(v.)

(5.2) V −(t, x) = inf
α∈Γ

E+
tx(J ).

In the max-plus stochastic control problem, we wish to replace Γ by a suitable subset

Γ1 ⊂ Γ with the property that

(5.3) V +(t, x) = inf
α∈Γ1

E+
tx(J ).

One choice of Γ1 is the set ΓS of strictly progressive strategies, defined as follows.

An Elliott-Kalton strategy β for the maximizing controller is a progressive function

from L2([t, T ]; U) into L2([t, T ]; Rm). An Elliott-Kalton strategy α for the minimizing

controller is strictly progressive if: for every Elliott-Kalton strategy β the equations

(5.4) u. = α(v.), v. = β(u.)

have a solution u., v. see [FS, Sec. 11.9] [F]. One could also take Γ1 = ΓS , which is

the closure of ΓS in the uniform norm. See [FS, Remark 11.9.1].

It is an interesting open question whether another choice for Γ1 can be found,

which is defined in a more intuitive way than (5.4). Any such Γ1 must include all

progressive strategies α which are piecewise constant in time in the following sense:

there is a partition of [t, T ] into subintervals I1, . . . , IM such that α(v.)s is constant on

each subinterval Ij for every v. One could then take Γ1 = Γ̃1, where Γ̃1 is the set of

progressive α with the following property: in (5.1) write J = J (α), when u. = α(v.).

Then α ∈ Γ̃1 if there exists a sequence αm of piecewise constant strategies, such that

(5.5) E+
tx[J (α)] = lim

m→∞
E+

tx[J (αm)].

Strategies α which are “strictly progressive” according to whatever class Γ1 is cho-

sen should have a role in the max-plus stochastic control problem which is analogous

to progressively measurable controls for systems governed by stochastic differential

equations like (3.1). In the usual stochastic formulation, all progressively measurable

controls in L2([t, T ] × Ω) are mean square limits of processes which are piecewise

constant in time. This property is used to show that the infimum of an expected

cost criterion taken over progressively measurable control processes is the same as the

infimum taken over the subset of piecewise constant control processes. Unfortunately,

there does not seem to be a convenient max-plus analogue of this result. Hence, the

author has not been able to find a more explicit characterization of the class Γ̃1 of

progressive strategies which satisfy (5.5).
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6. Importance sampling. Monte Carlo simulation is a basic technique for the

approximation of probabilities and expectations of random variables. Let Y be a

random variable on some probability space (Ω,F , P ), and let Y1, . . . , YN be IID copies

of Y . The Monte Carlo estimate for E(Y ) is the sample mean Y N = N−1(Y1 + . . . +

YN ). If Y = 1A is the indicator function of an event A, then this gives the Monte

Carlo estimate for the probability P (A).

The theory of large deviations provides asymptotic estimates for probabilities of

rare events and associated expectations. If P (A) is very small, then A is rarely ob-

served in a Monte Carlo sample unless the sample size N is very large. One must

modify the Monte Carlo technique in order to obtain useful estimates of large devia-

tions rates. The basic idea of importance sampling is to change a probability measure

from P to another probability measure P̃ and to consider IID copies η1, . . . , ηN of

η = Y dP/dP̃ where dP/dP̃ is the Radon-Nikodym derivative. The sample mean ηN

is taken as an estimator for E(Y ) = Ẽ[Y dP/dP̃ ], where E and Ẽ denote expectations

under probability measure P and probability measure P̃ respectively.

In this section and Section 7 we outline the Dupuis-Wang approach to importance

sampling as it applies to Markov diffusion processes. The method is based on variance

reduction ideas. The goal is to choose P̃ in some “admissible” class of probability

measures such that the variance under P̃ var(ηN ) is minimized. Since var(ηN ) =

N−1var (η) and ηN is unbiased, this is equivalent to choosing P̃ to minimize

(6.1) Ẽ(η2) = E

(

Y 2 dP

dP̃

)

.

Let xs be a Markov diffusion, t ≤ s ≤ T , which satisfies the stochastic differential

equation (SDE)

(6.2) dxs = b(s, xs)ds + Σ(s, xs)dws

where ws is a P -Brownian motion on (Ω,FT ) adapted to an increasing family of σ-

algebras {Fs}. We change probability measure from P to P̃ via change of drift from

b to another drift b̃ using a Girsanov transformation as in [FS, p. 231]. Let ζs be a

bounded {Fs}-progressively measurable process and let

w̃s = ws +

∫ s

t

ζrdr.

Then w̃s is a P̃ -Brownian motion, where the Radon-Nikodym derivative dP/dP̃ sat-

isfies

(6.3)
dP

dP̃
= exp

∫ T

t

(

ζrdw̃r −
1

2
|ζr|

2dr

)

.
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Moreover,

dxs = b̃(s, xs)ds + Σ(s, xs)dw̃s(6.4)

b̃(s, xs) = b(s, xs) − Σ(s, xs)ζs.

Let us now assume that Y = Ψ(xT ) depends on the final state xT of the Markov

diffusion process xs. Under suitable assumptions on b, Σ and Ψ, the variance can be

reduced to 0 by suitable choice of b̃. See [KP, Sec. 16.2]. The following version of this

result is easily obtained, using the Ito differential rule. Let

(6.5) Φ(t, x) = Etx[Ψ(xT )].

Theorem 6.1. Assume that b, Σ ∈ C1,2
b (Q0) and that Ψ ∈ C2

b (Rn). Then Φ ∈

C1,2
b (Q0) and Φ satisfies the backward PDE

(6.6)
∂Φ

∂t
+

1

2
trA(t, x)D2

xΦ + b(t, x) · DxΦ = 0,

where A = ΣΣ′, with Φ(T, x) = Ψ(x). Moreover, if Ψ(x) > 0 and Ψ−1(x) is bounded,

then the variance under P̃ of η = Y dP/dP̃ is 0 if

(6.7) b̃(t, x) = b(t, x) + A(t, x)Dx log Φ(t, x).

Proof. (Sketch). The proof that Φ ∈ C1,2
b (Q0) and satisfies (6.6) uses smooth

dependence of solutions xs to the SDE (6.2) on the initial state x = xt. See [GS, Sec.

11]. To prove the second statement, apply to Ito differential rule to log Φ(s, xs) and

use (6.6) to obtain since Φ(T, xT ) = Ψ(xT )

log Ψ(xT ) = log Φ(t, x) −

∫ T

t

(ζrdw̃r −
1

2
|ζr|

2dr),

ζr = −Σ′(r, xr)Dx log Φ(r, xr).

By (6.3), η = Ψ(xT )dP/dP̃ equals the constant Φ(t, x) almost surely. Hence the

variance of η under P̃ is 0.

Remark 6.1. Results similar to Theorem 6.1 can be obtained under differ-

ent assumptions. If the matrices A(t, x) are positive definite with bounded inverses

A−1(t, x), then results about linear parabolic PDEs can be used. See [FS, Thm. 6.3.1].

The exit probability problem, with Φ(t, x) = Ptx(xT ∈ B) can also be considered.

Although an indicator function Ψ(x) = 1B(x) does not satisfy our assumptions, the

exit problem can be studied by PDE methods if A−1(t, x) is bounded. See [FS, Secs.

6.6. and 7.10]. For the exit problem, the optimal P̃ can be obtained by conditioning

P on the event xT ∈ B. See, for example, Sec. 6.4 of the first edition of [FS].

From the viewpoint of applications Theorem 6.1 is generally not helpful, since

it depends on solving the backward PDE for Φ(t, x) which is the expectation of the
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random variable Ψ(xT ) to be estimated via Monte Carlo. In Section 7 we will outline

an alternative technique due to Dupuis and Wang [DW1][DW2][DSW] based on small

noise (ǫ → 0) asymptotics and approximate supersolutions to certainty-equivalent

HJB equations. In many examples this technique gives changes of probability measure

which are nearly optimal for small ǫ.

To describe this technique, let us first rewrite the problem of choosing ζr to min-

imize Ẽ(η2) in (6.1) as a risk sensitive stochastic control problem. For this purpose,

we make another change of probability measure, from P to P̂ , via Girsanov such that

(6.8)
dP̂

dP
= exp

∫ T

t

(

ζrdwr −
1

2
|ζr|

2dr

)

.

Then (6.2) can be rewritten as

dxs = (b(s, xs) + Σ(s, xs)ζs)ds + Σ(s, xs)dŵs,(6.9)

ws = ŵs +

∫ s

t

ζrdr

and ŵs is a P̂ -Brownian motion. Then (6.1) with Y = Ψ(xT ) becomes

Ẽ(η2) = E

[

(Ψ(xT ))2
dP̂

dP
exp

∫ T

t

|ζr |
2dr

]

(6.10)

= Ê[exp(J )],

(6.11) J =

∫ T

t

|ζr|
2dr + 2 log Ψ(xT ).

In (6.10), Ê is expectation under P̂ .

Nearly deterministic Markov diffusions. Let ǫ > 0 be a “small” parameter,

and let xǫ
s satisfy (6.2) with Σ(t, x) = ǫσ(t, x). Let us = ǫζs. Then xǫ

s satisfies

(6.12) dxǫ
x = f(s, xǫ

s, us)ds + ǫσ(s, xǫ
s)dŵs

(6.13) f(t, x, u) = b(t, x) + σ(t, x)u.

Let us assume that b, σ ∈ C1,2
b (Q0). We also suppose that Y is of the form Y =

exp[(2ǫ2)−1G(xǫ
T )] with G ∈ C2

b (Rn). These assumptions can be weakened in various

ways. See Remark 6.3 below. By (6.10), (6.11)

(6.14) Ẽ(η2) = Ê[exp(ǫ−2J ǫ)]

where J ǫ is as in (3.2) with L(u) = |u|2. If we take initial data xǫ
t = x and regard us

as a minimizing control, then the problem of choosing us to minimize Ẽ(η2) becomes
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a risk-sensitive stochastic control problem of the form considered in Section 3. The

control space is U = R
m (no constraints on the control us.) The certainty-equivalent

Hamiltonian in (3.6) now has the form

Hǫ = b(t, x) · p +
ǫ2

2
tr a(t, x)π +

1

2
a(t, x)p · p(6.15)

+ min
u

[σ(t, x)u · p + |u|2]

= b(t, x) · p +
ǫ2

2
tr a(t, x)π +

1

4
a(t, x)p · p.

The min occurs at u = − 1
2σ′p. This provides the following recipe for finding the

optimal drift b̃ = b̃ǫ for which the corresponding probability measure P̃ minimizes

(6.14).

Theorem 6.2. Let V ǫ ∈ C1,2(Q0) be a solution to the certainty-equivalent HJB

equation (3.5) with boundary condition (3.7), such that V ǫ and DxV ǫ are bounded on

Q0. Let

(6.16) uǫ(t, x) = −
1

2
σ′(t, x)DxV ǫ(t, x)

(6.17) b̃ǫ = b − σuǫ = b +
1

2
aDxV ǫ.

Then b̃ǫ is the optimal drift and V ǫ is the certainty-equivalent value function.

Theorem 6.2 can be proved using a standard verification argument in stochastic

control theory, applied to the (non-certainty equivalent) value function exp(ǫ−2V ǫ).

See [FS, Thm. 4.3.1 and Remark 4.3.3].

In (6.5) Φ = Φǫ now has the form

(6.18) Φǫ(t, x) = Etx[exp(2ǫ2)−1G(xǫ
T )].

Let

(6.19) Iǫ(t, x) = ǫ2 log Φǫ(t, x) = Etx

[

1

2
G(xǫ

T )

]

.

Theorem 6.3. V ǫ = 2Iǫ is the certainty-equivalent value function for the risk

sensitive stochastic control problem.

Proof. (Sketch). In (6.6) we take A = ǫ2a. Then Theorem 6.1 and a routine

calculation shows that Iǫ ∈ C1,2
b (Q0) and 2Iǫ satisfies the certainty-equivalent HJB

equation (3.5) and the boundary condition 2Iǫ(T, x) = G(x). By Theorem 6.2, V ǫ =

2Iǫ is the certainty-equivalent value function.

Small noise limits. We begin by recalling the following Freidlin-Wentzell large

deviations result [FW]:

(6.20) lim
ǫ→0

Iǫ(t, x) = I0(t, x),
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where I0(t, x) is the value function for the following deterministic control problem.

The state ξs satisfies

(6.21)
dξs

ds
= b(s, ξs) + σ(s, ξs)vs, t ≤ s ≤ T,

with control vs ∈ R
m and ξt = x. Then

(6.22) I0(t, x) = sup
v
·

[

−
1

2

∫ T

t

|vs|
2ds +

1

2
G(ξT )

]

.

In large deviations terminology, −I0(t, x) is the rate function. Moreover, I0 is the

unique bounded, Lipschitz continuous viscosity solution to the PDE

(6.23)
∂I0

∂t
+ b(t, x) · DxI0 +

1

2
a(t, x)DxI0 · DxI0 = 0

with boundary data I0(T, x) = 1
2G(x). See [FS, Sec. 6.6]. For a PDE/viscosity

solution proof of (6.20) see [FS, Thm. 6.6.2].

Differential game. From the discussion in Section 4, together with (6.14) and

L(u) = |u|2, we anticipate that the following differential game should arise from the

risk sensitive control problem in the limit ǫ → 0. The game state xs satisfies

(6.24)
dxs

ds
= b(s, xs) + σ(s, xs)us + σ(s, xs)vs

with initial data xt = x. The game payoff is

(6.25) P (t, x; u., v.) =

∫ T

t

[

|us|
2 −

1

2
|vs|

2

]

ds + G(xT ).

There are no control constraints. Thus, us ∈ R
m, vs ∈ R

m. The Isaacs PDE is

(6.26)
∂V

∂t
+ H(t, x, DxV ) = 0

H(t, x, p) = b(t, x) · p + min
u

[σ(t, x)u · p + |u|2](6.27)

+ max
v

[

σ(t, x)v · p −
1

2
|v|2

]

= b(t, x) · p +
1

4
a(t, x)p · p.

The min and max are taken over u ∈ R
m, v ∈ R

m. Since min and max appear

separately in (6.27) the Isaacs minimax condition holds. Thus, we anticipate that

upper and lower differential game values should be equal. However, there is a difficulty

in defining the differential game value since the control spaces R
m are not compact.

This difficulty can be avoided by introducing artificial constraints |us| ≤ R, |vs| ≤ R.

Let VR(t, x) be the Elliott-Kalton differential game value with these constraints.

Theorem 6.4. As ǫ → 0, the certainty-equivalent value function V ǫ = 2Iǫ tends

to V 0 = 2I0, uniformly on compact subsets of Q0. Moreover,
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(a) V 0 is the unique bounded, Lipschitz continuous viscosity solution of (6.26)

with V 0(T, x) = G(x);

(b) There exists R0 such that V 0(t, x) = VR(t, x) for every R ≥ R0.

Proof. . (Sketch) By [FS, Thm. 6.6.2], Iǫ → I0 uniformly on compact sets

and I0 is the unique bounded, Lipschitz continuous viscosity solution of (6.23) with

boundary data I0(T, x) = 1
2G(x). Hence, V 0 is a bounded, Lipschitz continuous

viscosity solution to (6.26) with V 0(T, x) = G(x). Uniqueness of V 0 and statement

(b) follow using arguments in [FS, Sec. 11.7]. In fact, if M is a Lipschitz constant

for V 0(t, ·) and K is a bound for |σ′(t, x)p| when |p| ≤ M , then it suffices to take

R0 = K.

Remark 6.2. The constant R0 = K in the proof is suggested by the following

formal argument. At each point (t, x) where V 0 is differentiable, |DxV 0(t, x)| ≤ M .

If we take p = DxV 0(t, x) in (6.27), then the min over u and max over v are the same

with the constraints |u| ≤ R, |v| ≤ R for R ≥ K. This is not a rigorous argument

since DxV 0(t, x) only exists for almost all x.

Remark 6.3. The rather strong assumptions that b, σ ∈ C1,2
b (Q0) and G ∈

C2
b (Rn) can be weakened in various ways. In Theorem 6.3 it suffices to assume that

G is bounded and uniformly continuous, since any such G is the uniform limit as

m → ∞ of a sequence of functions Gm ∈ C2
b (Rn). However, the optimal drift uǫ in

(6.16) should then be replaced by nearly optimal uǫ
m obtained when G is replaced

by Gm. Theorem 6.4 remains true if b, σ ∈ C1
b (Q0) and G ∈ C1

b (Rm). However, for

V ǫ to be a smooth solution to (3.5) the matrices a(t, x) should be assumed to have

bounded inverses. Otherwise, V ǫ is a solution to (3.5) in the viscosity sense.

7. Supersolution method. In this section we describe a method for obtaining

changes of probability measure for the importance sampling problem in Section 6. The

method is based on considering functions which are approximately supersolutions of

the HJB equation for the certainty-equivalent value function V ǫ. This method is

due to Dupuis and Wang. In their formulation, certainty-equivalent expectations are

replaced by their negatives, and supersolutions are replaced by subsolutions. This

method was applied in [DW1][DW2][DSW] to obtain approximately optimal changes

of probability measure for various types of importance sampling problems, including

large deviations for sums of IID random variables and rare buffer overflows in queuing

systems.

For δ > 0 let us call W (t, x) a smooth δ-supersolution to (6.26) and the boundary

data if W ∈ C1,2(Q0) and

(7.1)
∂W

∂t
+ H(t, x, DxW ) ≤ δ

(7.2) G(x) ≤ W (T, x) + δ.
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The min in (6.27) with p = DxW is attained at

(7.3) u(t, x) = −
1

2
σ′(t, x)DxW (t, x).

The corresponding change of probability measure from P to P̂ corresponds to a change

of drift from b to b̂ (see (6.9)), where

(7.4) b̂ = b −
1

2
aDxW.

We recall from Section 6 the notations

η = Y
dP

dP̃
, Y = exp

[

(2ǫ2)−1G(xǫ
T )

]

.

Theorem 7.1. Assume that W ∈ C1,2
b (Q0) is a smooth δ-supersolution to (6.26)

and the boundary data. Then there exist ǫ0 > 0, C > 0 such that, for 0 < ǫ < ǫ0

(7.5) Ẽtx(η2) ≤ W (t, x) + Cδ.

Proof. . (Sketch) Let φ = exp(ǫ−2W ). Then for small enough ǫ

(7.6)
∂φ

∂t
+ b̂ · Dxφ +

ǫ2

2
tr aD2

xφ + ǫ−2(|u|2 − 2δ)φ ≤ 0.

Let xǫ
s be the solution of (6.12) with us = u(s, xǫ

s) and initial data xǫ
t = x. By (7.6)

and the Feynman-Kac formula [FS, p. 233]

Êtx

{

φ(T, xǫ
T ) exp

[

ǫ−2

∫ T

t

(|us|
2 − 2δ)ds

]}

≤ φ(t, x).

The proof is completed by using (6.14), (7.2) and taking ǫ2 log.

The usefulness of Theorem 7.1 depends on finding good choices for W without

solving PDEs. To find I0(t1, x1) for a particular set (t1, x1) of initial data, the solution

to the control problem (6.21)–(6.22) is needed. This does not require solving the PDE

(6.23). Suppose that a δ-supersolution W is found with W (t1, x1) ≤ 2I0(t1, x1) + β.

The variance of η under P̃ is

var(η) = Ẽt1x1
(η2) − [Ẽt1x1

(η)]2

= Ẽt1x1
(η2) − [Φǫ(t1, x1)]

2

with Φǫ as in (6.18). Suppose that

W (t1, x1) ≤ 2I0(t1, x1) + β.

Since V ǫ = 2Iǫ = 2ǫ2 log Φǫ tends to 2I0 as ǫ → 0, we obtain for small ǫ the inequality

(7.7) ǫ2 log

{

(var(η)]
1

2

Φǫ(t1, x1)

}

≤
1

2
C1δ + β.
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For small δ and β, this gives a sharp upper bound for the standard deviation/mean

ratio. [DW2] has a more extended discussion of the supersolution method, including

several examples in which W (t, x) is a smoothed version of the maximum of functions

W1, . . . , WK , where each Wk is an affine function. The method was applied in [DSW]

to problems of rare buffer overflows in tandem queues.
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