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A COMPARISON PRINCIPLE FOR EQUATIONS OF THE

HAMILTON-JACOBI TYPE IN SET-MEMBERSHIP FILTERING∗

A. B. KURZHANSKI† AND P. VARAIYA†

Abstract. This paper gives comparison principles for first-order PDEs of the Hamilton-Jacobi-

Bellman type that arise in the problem of filtering under unknown disturbances with set-membership

bounds on the uncertainty. The exact solutions of this problem, given in set-theoretic terms as “infor-

mation sets,” are expressed as level sets to the solutions of some specific types of the HJB equation.

But these solutions require complicated calculations. This paper presents an alternative approach

that avoids exact solutions in favor of their upper and lower bounds, which in many cases may suffice

for solving the required problems. For systems with linear structure ellipsoidal estimates are given,

which ensure tight approximations of the convex information sets.
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1. Introduction. The solution to many problems of state estimation and control

synthesis for systems described by ODEs may be reduced to the investigation of first

order PDEs of the Hamilton-Jacobi-Bellman (HJB) type and their modifications. HJB

equations may also be used to calculate forward and backward reachability sets for

control systems without disturbances, and the HJBI (HJB-Isaacs) equation may be

used for systems with unknown but bounded disturbances [1, 2, 3, 4, 5, 6, 7].

Another application for Hamiltonian techniques is the solution of the “guaran-

teed” or “set-membership” filtering problem, which is to estimate the state of a

dynamic system, based on observations corrupted by unknown and bounded noise

with no statistical description. The solution to such a filtering problem is given by

“information sets” of states consistent with the system dynamics and the available

measurements. In turn, the information sets may be expressed as level sets of certain

functions, called“information states,” which are the solutions to special types of the

HJB equation. The problem of calculating the information sets turns into one of

finding reachability sets under state constraints that arrive on-line, in contrast with

problems in which state constraints that are given in advance [8, 9, 10, 11, 12].

Solutions to equations of the HJB type are rather difficult to calculate, and the

design of computational algorithms is still under development [14, 15]. However, for

many applied problems one may often be satisfied with approximate solutions that
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impose a smaller computational burden and may be achieved by substituting the

original HJB equations with variational inequalities [16] due to certain comparison

principles ([17, 18, 4]). This paper provides comparison theorems for HJB equations

generated by the guaranteed state estimation (filtering) problem that are applicable to

both smooth and non-smooth solutions of the HJB equations. It is also shown that in

the case of linear systems with convex constraints on the disturbances this approach

may lead to effective external and internal approximations of the information sets

using ellipsoidal techniques.

2. The Set-membership Filtering Problem and the Related HJB Equa-

tion. Consider the system

(1) ẋ = f(t, x, v), t ∈ [t0, ϑ], x(t0) ∈ X 0,

in which x ∈ IRn is the state, v(t) ∈ Q(t) ⊂ IRq is the control, and the compact set X 0

is the starting set. The function f(t, x, v) is assumed continuous in all variables and

satisfies standard conditions of existence, uniqueness and prolongation of solutions

within the intervals under consideration; Q(t) is a set-valued function with convex,

compact values, Hausdorff-continuous in time.

Given also is a measurement equation

(2) y(t) = g(t, x) + w(t),

in which w is the measurement ‘noise’, the unknown disturbance in the measurement

channel. We assume w(t) ∈ R(t) ⊂ IRr, and the set R(t) has properties similar to

Q(t). The function y(t)—the available measurement—is assumed to be known.

Problem 2.1. The system (1) is given with measurement equation (2). The

starting position {t0,X
0} at time t0 and the available measurement y(t) in the interval

t ∈ [t0, τ ] are also given. One is to specify the information set X [τ ] = X (τ, t0,X
0)

of all states x(τ) generated by system (1) that are consistent with y(t) of (1) and the

constraints v(t) ∈ Q(t), w(t) ∈ Rr.

The set X [τ ] is a guaranteed estimate of the state x(τ), and includes the un-

known actual state x(τ) of system (1). Hence the on-line state of the overall system

that can be computed from the measurements for t ≥ t0 may be represented by the

pair {t,X [t]}. (Of course, the on-line state is also trivially represented by the pair

{t, yt(·)}, yt(·) = y(t + σ), σ ∈ [t0 − t, 0].)

Given the starting position {t0,X
0} and measurement y(t), t ∈ [t0, τ ], it makes

sense to construct for system (1), (3) a forward reachability tube X [t] = X (t; t0,X
0),

t ≥ t0, which emanates from the set-valued position {t0,X
0} and develops under the

on-line state constraint [13]

(3) g(t, x) ∈ y(t) −R(t).
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Then X [t] is precisely the information set that solves Problem 2.1 of guaranteed fil-

tering.

The last formulation leads to an alternative problem of dynamic optimization.

Denote

d2(y,R(t)) = min{(y − r, y − r)) |r ∈ R(t)},

Together with (1) consider the equation

(4) ż(t) = −d2(y(t) − g(t, x(t)),R(t)), z ∈ IR.

Lemma 2.1. The information set X [τ ] = X (τ, ·) may be expressed as the level set

(5) X [τ ] = {x : V (τ, x, 0) ≤ 0}

of the value function

(6) V (t, x, z) = min
v

{d2(x(t0),X
0) + |z(t0)|

∣

∣

∣

∣

x(t) = x, z(t) = z}, t ≥ t0.

The minimum is over all functions v(s) ∈ Q(s), s ∈ [t0, t].

Problem 2.2. The starting position {t0,X
0} and the available measurements

y(t), with t ∈ [t0, τ ], are given. One is to specify the value function V (t, x, z), with

boundary condition

V (t0, x, z) = d2(x,X 0) + |z|.

The function V (t, x, z) is henceforward referred to as the information state of

system (1), (4). Its ‘cross-section’ or level set at level 0, namely (5), is in fact the

reachability set for this system under the on-line state constraints (3), with y(t) given.

We use a more detailed notation V (t, x, z) = V (t, x, z | V (t0, ·)) for the function

V (t, x, z) to emphasize its dependence on the boundary condition V (t0, ·).

Lemma 2.2. The following property holds:

(7) V (t, x, z| V (t0, ·)) = V (t, x, z|V (s, ·|V (t0, ·))), t0 ≤ s ≤ t.

The ‘semigroup’ property (7) allows one to derive the following equation of HJB

type:

(8) Vt + max{(Vx, f(t, x, v)) | v ∈ Q(t)} − (Vz , d
2(y(t) − g(t, x),R(t))) = 0,

with boundary condition

(9) V (t0, x, z) = d2(x,X 0) + |z|.

Here Vt, Vx, Vz denote the appropriate partial derivatives of V (t, x, z).
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We thus come to the following proposition.

Theorem 2.1. The information set X [τ ] is the level set

X [τ ] = {x : V (τ, x, 0) ≤ 0},

in which V (t, x, z) is the solution to equation (8) with boundary condition (9).

In this paper we avoid finding the exact solution for equation (8). Instead we

describe approximate solutions using a comparison principle. Then a lower estimate

of function V (t, x, z) will have a larger level set that is an external estimate of set

X [t].

3. The HJB equation: lower and upper estimates of solutions. Introduce

the notation

H(t, x, z, p, p0) = max{(p, f(t, x, v))|v ∈ Q(t)} − (p0, d2(y(t) − g(t, x),R(t))),

As indicated above (see also [2, 4]), the solution V (t, x, z) of the corresponding “for-

ward” HJB equation

(10) Vt + H(t, x, z, Vx, Vz) = 0, V (t0, x, z) = d(x,X 0) + z, z > 0,

allows one to calculate X [t] = X (t, t0,X
0) as the level set

(11) X [τ ] = {x : V (τ, x, 0) ≤ 0}.

Here d(x,X ) = inf{(x − m, x − m)1/2 | m ∈ X} is the Euclidean distance from x to

the set X . Property (11) is independent of whether V is a classical or a generalized

solution of equation (10).

Thus the exact description of set X [τ ] requires one to solve the first-order PDE

(10). This PDE is often difficult to solve because the reachability sets for nonlinear

systems can have a complicated form.

We therefore develop comparison theorems that provide lower and upper estimates

of V (t, x). Their level sets yield external and internal estimates of sets X [τ ].

Assumption 3.1. Given are functions H(t, x, z, p, p0), w+(t, x, z) ∈ C1 and

µ(t) ∈ L1, satisfying the inequalities

(12) H(t, x, z, p, p0) ≤ H(t, x, z, p, p0), ∀{t, x, z, p, p0},

(13) w+
t + H(t, x, z, wx, wz) ≤ µ(t).

Theorem 3.1. Suppose H(t, x, z, p, p0), w+(t, x, z), µ(t) satisfy Assumption 3.1.

Then the following estimate for the information set X [t] holds:

(14) X [t] ⊆ X+[t],
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with

(15) X+[t] =

{

x : w+(t, x, 0) ≤

∫ t

t0

µ(s)ds + max{w+(t0, x, 0) | x ∈ X 0}

}

.

Consider a pair x∗ ∈ X [t], v∗(s) ∈ Q(s), s ∈ [t0, t], so that the corresponding

trajectory x∗(s, t, x∗ | v∗(·)) = x∗[s] ∈ X [s]. Then

dw+(t, x, z)/dt|x=x∗(t) =

= w+
t (t, x∗, z) + (w+

x (t, x∗, z), f(t, x∗, v∗)) − w+
z (t, x∗, z)d2(y(t) − g(t, x∗(t)),R(t)) ≤

≤ w+
t (t, x∗, z) + H(t, x∗, z, w+

x , w+
z ) ≤ w+

t (t, x∗, z) + H(t, x∗, w+
x , 1) ≤ µ(t),

and hence

dw+(s, x, z)/ds|x=x∗(s),z(s)=0 ≤ µ(s).

Integrating this inequality from t0 to t gives

w+(t, x, 0) ≤

∫ t

t0

µ(s)ds + w(t0, x(t0), 0) ≤

∫ t

t0

µ(s)ds + max{w+(t0, x, 0)|x ∈ X 0},

which implies x∗(t) ∈ X+[t] and the theorem is proved.

Recall that when function V (t, x) is not differentiable, equation (12) is an expres-

sion in a formal symbolic notation whose solution should be considered in a “viscosity”

sense ( [19], [20], [21]) or equivalent “minimax” sense ([22]).

We move to the discussion of internal estimates for the information sets X [t] =

X (t, t0,X
0) and the related HJB equations. As in the above, we do not necessarily

require differentiability of the value function V (t, x, z).

Consider the next assumption.

Assumption 3.2. Given are functions H−(t, x, z, p, p0) and w−(t, x, z) ∈ C1,

satisfying the inequalities

(i) H(t, x, z, p, p0) ≥ H−(t, x, z, p, p0), ∀{t, x, z, p, p0},

(ii) w−
t (t, x) + H−(t, x, z, w−

x (t, x, z), w−
z (t, x, z)) ≥ 0;

(iii) w−(t0, x, z) ≥ V (t0, x, z), z ≥ 0.

Under Assumption 3.2(i, ii) we have

w−
t + H(t, x, w−

x , w−
z ) ≥ w−

t + H−(t, x, w−
x , w−

z ) ≥ 0.
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Integrating the last inequality from ϑ to t0 along a trajectory x[t] ∈ X [t], t ∈ [t0, ϑ],

with x[ϑ] = x, gives

w−(ϑ, x, 0) − w−(t0, x[t0], 0) + V (t0, x[t0], 0) − V (ϑ, x, 0) ≥ 0

and so, under Assumption 3.2 (iii),

w−(ϑ, x, 0) ≥ w−(t0, x[t0], 0) ≥ V (t0, x[t0], 0) = V (ϑ, x, 0)

which brings us to the next proposition.

Theorem 3.2. Under Assumption 3.2 the following inequality is satisfied:

V (ϑ, x, 0) ≤ w−(ϑ, x, 0).

This proposition is similar to those of 7.5-7.7 from [17].

Denoting X−[t] = {x : w−(t, x, 0) ≤ 0}, t ≥ t0 and using the last inequality, we

reach the conclusion.

Corollary 3.1. Under Assumption 3.2 the following inclusion holds:

(16) X−[t] ⊆ X [t].

The specificity of the estimation problem considered here is that the measure-

ment y(t) arrives on-line. Therefore, the class of functions y(t) under consideration

will depend on the class of functions w(t) that generate the measurement noise. In

particular, y(t) may be taken continuous if the functions w(t) are, too.

Remark 3.1. Since the information set X [τ ] is the level set of the information

state (the function V (τ, x, z)), the current position of the system may be defined not

only as one of the pairs {τ,X [τ ]}, {τ, yτ (·) = y(t + σ), σ ∈ [t0 − t, 0]}, as indicated

before, but also as the pair {τ, V (τ, x, z)}.

Taking {τ, V (τ, x, z)} to be the position appears more convenient, because its

evolution may be more easily expressed through conventional HJB partial differential

equations, rather than through less familiar constructions such as funnel equations

and the like required for {τ,X [τ ]}.

We now pass to the class of linear systems with convex constraints for which the

results of the previous sections may be developed with greater detail.

4. The Linear-Convex Case . Given the linear system

(17) ẋ = A(t)x + B(t)u + C(t)v,

in which u(t) ∈ Rp is the given control and v(t) ∈ Rq is the unknown disturbance.

Given also is a measurement equation

y(t) = G(t)x + w(t),
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in which y(t) is the available measurement and w(t) ∈ Rr is the unknown disturbance

in the measurement channel. The disturbances v, w are taken to be bounded with

known bounds given by nondegenerate ellipsoids,

(18) v ∈ Q(t) = E(q, Q(t)); w ∈ R(t) = E(r(t),R(t)),

with Q′(t) = Q(t) > 0, R′(t) = R(t) > 0. The ellipsoid

E(q, Q) = {v : (v − q, Q−1(v − q)) ≤ 1},

has support function

ρ(l | E(q, Q)) = max{(l, q) | q ∈ E(q, Q)} = (l, q) + (q, P, q)1/2.

Given also is an ellipsoidal bound on the initial vector x(t0),

x(t0) ∈ X 0 = E(x0, X0),

so that the starting position is {t0, E(x0, X0)}.

These relations will be referred to as describing the linear-convex case with ellip-

soidal bounds. In this special case of Problem 2.1 we assume that the control u(t) is

known. Note that for given y(t) equation (18) imposes an on-line state constraint

(19) G(t)x(t) ∈ y(t) − r(t) + E(0, R(t)) = Ry(t).

For this case we now specify the alternative problem of dynamic optimization stated

in Section 2. Let

d2(y, E(r, R)) = max{0, (y − r, R(y − r)) − 1},

k2(t) = (y(t) − G(t)x − r(t), R(t)(y(t) − G(t)x − r(t))).

Together with (17) consider the equation

(20) ż = −d2(y(t) − G(t)x, E(r(t), R(t))), z ∈ IR, z ≥ 0.

Lemma 4.1. The information set X [τ ] may be expressed as the level set

(21) X [τ ] = {x : V (τ, x, 0) ≤ 0},

for the value function

(22) V (t, x, z) = min
u

{d2(x(t0), E(x0, X0)) + |z(t0)|

∣

∣

∣

∣

x(t) = x, z(t) = z}, t ≥ t0.

The HJB equation for V (t, x, z) is

Vt + (Vx, A(t)x + B(t)u(t) + C(t)q(t))+
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(23) max{(Vx, C(t)v) | v ∈ E(0, Q(t))} − (Vz , d
2(y(t) − G(t)x, E(r(t), R(t))) = 0,

with boundary condition

(24) V (t0, x, z) = d2(x, E(x0, X0)) + |z|.

As before Vt, Vx, Vz are the partial derivatives of V (t, x, z).

In greater detail, with z ≥ 0, t ≥ t0, equation (23) turns into

Vt + (Vx, A(t)x + B(t)u(t) + C(t)q(t))+

(25) (Vx, C(t)Q(t)C′(t)Vx)1/2 − (Vz , I(h(t, x) > 0)h(t, x)) = 0,

with h(t, x) = k2(t, x) − 1. Here I(h > 0) = 1, if h > 0 and I(h > 0) = 0 if h ≤ 0, so

that I(h > 0) is the indicator function for the semiaxis h > 0.

We thus come to the following proposition.

Theorem 4.1. The information set X [τ ] is the level set

X [τ ] = {x : V (τ, x, 0) ≤ 0},

in which V (t, x, z) is the solution to equation (25) with boundary condition (24).

We now specialize the results of Section 3 for linear convex systems with ellip-

soidal bounds. We shall approximate the information state V (t, x, z) by parameterized

quadratic forms. The corresponding information sets X [t] will then be approximated

by parameterized families of ellipsoids, [23], [24].

5. Ellipsoidal Estimates. We shall now approximate the solution X [t] of equa-

tion (17), (19), x(t0) ∈ X [t] by external ellipsoids.

Denote

H(t, x, z, p, p0) = (p, A(t)x + B(t)u(t) + C(t)q(t)) + (p, C(t)Q(t)C′(t)p)1/2−

(26) −(p0, I(h(t, x) > 0)h(t, x)).

and recall the relation

(p, C(t)Q(t)C′(t)p)1/2 ≤ γ2(t) + (4γ2)−1(p, C(t)Q(t)C′(t)p), ∀p ∈ IRn,

with equality reached for γ2(t) = (1/2)(p, C(t)Q(t)C′(t))1/2.

Denoting

H(t, x, z, p, p0) = (p, A(t)x+B(t)u(t)+C(t)q(t))+γ2(t)+(4γ2)−1(p, C(t)Q(t)C′(t)p)−

−(p0, I(h(t, x) > 0)h(t, x)),
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we observe that H(t, x, z, p, p0) ≤ H(t, x, z, p, p0) for all values of the variables {t, x, z,

p, p0}.

Let us now approximate the function V (t, x, z, p, p0) in the domain x ∈ IRn, z ≥

0, t ≥ t0 by a quadratic function of type

w(t, x, z) = (x − x∗(t), K(t)(x − x∗(t)) + z − 1,

with differentiable K(t) = K ′(t) > 0.

Let us first assume k2(t, x) − 1 > 0, so that I(h(t, x) > 0) = 1. Then we have

wt + H(t, x, z, wx, wz)

= wt + (wx, A(t)x + B(t)u(t) + C(t)q(t))

+(wx, C(t)Q(t)C′(t)wx)1/2 − I(k2(t, x) − 1 > 0)(k2(t, x) − 1))

≤ wt + H(t, x, z, wx, wz)

≤ wt + (wx, A(t)x + B(t)u(t) + C(t)q(t))

+γ2(t) + (4γ2(t))−1((wx, C(t)Q(t)C′(t)wx)

−(y(t) − G(t)x − r(t), R(t)(y(t) − G(t)x − r(t)) + 1.

Substituting w(t, x, z) = (x − x∗(t), K(t)(x − x∗(t)) + z, we obtain

wt + H(t, x, z, wx, wz)

≤ (x − x∗(t), K̇(t)(x − x∗(t))) + 2(K(x − x∗(t)), A(t)x + B(t)u(t) + C(t)q(t))

+(γ2(t))−1(K(x − x∗(t), C(t)Q(t)C′(t)K(x − x∗(t))) + γ2(t)

−α((y(t) − G(t)x − r(t), R(t)(y(t) − G(t)x − r(t))) − 1),(27)

with α = 1.

In case k2(t, x) − 1 ≤ 0 we will have the same inequality (27), except that now

α = 0.

Continuing further with α = 1, we demand that the next equality holds:

((x − x∗(t), K̇(t)(x − x∗(t)) − 2(ẋ∗(t), K(t)(x − x∗(t))+

+2(K(t)(x − x∗(t), A(t)(x − x∗(t)) + A(t)x∗(t) + B(t)u(t) + C(t)q(t))+

+(γ2(t))−1((K(t)(x − x∗(t)), C(t)Q(t)C′(t)K(t)(x − x∗(t)) + γ2−

α

(

G(t)(x − x∗(t)), R(t)G(t)(x − x∗(t))) + (G(t)x∗(t), R(t)G(t)x∗(t))+

+2(G(t)x∗(t), R(t)G(t)(x − x∗(t))) − 2(y(t) − r(t), R(t)G(t)(x − x∗(t))−



188 A. B. KURZHANSKI AND P. VARAIYA

−2(y(t) − r(t), R(t)G(t)x∗(t)) + (y(t) − r(t), R(t)(y(t) − r(t))

)

= 0.

Equating to zero the terms with multipliers of second order in x − x∗, then those of

first order in the same variable, we observe that the last equality will be fulfilled if

and only if the following equations hold:

(28) K̇ + K ′A(t) + A′(t)K + (γ2(t))−1KC(t)Q(t)C′(t)K − αG′(t)R(t)G(t) = 0,

(29) ẋ∗ = A(t)x∗(t) + B(t)u(t) + C(t)q(t) + αG′(t)R(t)(y(t) − G(t)x∗ − r(t)),

with boundary conditions

K(t0) = (X0)−1, x∗(t0) = x0.

Conditions (27)–(29) together with some further calculation yield the inequality

(30) dw/dt ≤ γ2(t) + α, (α = 1),

which follows from (27) if h(t, x) > 0. If h(t, x) ≤ 0, relation (30) holds for α = 0.

We therefore have (30) where α is either one or zero.

Now recall that w(t, x, z) = (x − x∗(t), K(t)(x − x∗(t)) + z − 1, and since we

chose K(t0) = (X0)−1 we have also satisfied Assumption 3.2(iii). Hence we have

w(t0, x, z) ≤ V (t0, x, z).

Let us now integrate the last inequality along a trajectory x[t] = x(t; ϑ, x), z[t] =

z(t; ϑ, z) with x(ϑ) = x, z(ϑ) = z, that runs within the exact information set X [t]

(which happens under x ∈ X [ϑ], z = 0 and disturbances v(t) ∈ E(q(t), Q(t)), w(t) ∈

E(r(t), R(t))). Then we have

w(ϑ, x, 0) −

∫ ϑ

t0

γ2(s)ds

≤ w(t0, x(t0), 0) −

∫ ϑ

t0

I(h(t, x[s]) > 0)h(t, x∗[s])ds = w(t0, x(t0), 0)

≤ V (t0, x[t0], 0) = V (ϑ, x, 0),(31)

so that

(32) w(ϑ, x, 0) = w(ϑ, x, 0) −

∫ ϑ

t0

γ2(s)ds ≤ V (ϑ, x, 0).

In the general case (z > 0) we have

w(ϑ, x, z) −

∫ ϑ

t0

(γ2(s) + α(s))ds ≤

(33) ≤ w(t0, x[t0], z[t0]) ≤ V (t0, x[t0], z) = V (ϑ, x, z),
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Here α(t) = α(z[t]) = 1 if z[t] > 0 and α(t) = α(z[t]) = 0 if z[t] = 0.

Theorem 5.1. The lower estimate for V (ϑ, x, 0) is given according to (32) by

function w(t, x, 0), where K(t), x∗(t) are given by (28), (29).

We further transform equation (28) to new variables, substituting variable K by

K+ according to relations

K+ = K−1, K̇+ = −K+K̇K+, K+(t) =

(

1 +

∫ ϑ

t

(γ2(s) + α(s))ds

)

K(t)

We then come to equations

K̇+ = A(t)K+ + K+A′(t) + (π(t) + β(t))K+ − (π(t))−1C(t)Q(t)C′(t)−

(34) −β(t)(K+G′(t)R(t)G(t)K+)

and boundary condition K+(t0) = X0.

Here

π(t) = γ2(t)/(1 +

∫ ϑ

t

(γ2(s) + α(s))ds), β(t) = α(t)/(1 +

∫ ϑ

t

(γ2(s) + α(s))ds)

where γ2(t) ≥ 0 and α(t) is either one or zero.

A particular difficulty of equations (28), (29), (34) is that they contain the multi-

plier α(t) = α(z[t]), which is either 1 or zero, depending on z[t] that depends on x[t],

which is unknown—in fact it is being estimated. This difficulty may be overcome as

follows.

The measurement y(t) is said to be informative if it brings an “innovation” for

all t ≥ t0, so that the state constraint is always “active.” That is, if the starting

set X 0, the measurement y(t) and the constraints on v(t), w(t) are such that in the

reachability tube of system (1), (17) without state constraints, there always exists a

trajectory violating the state constraint (3), (19) throughout the whole time interval

under consideration, then the measurement y(t) is informative. In this case we may

take α(t) ≡ 1, ∀t ≥ t0.

The formulas derived here then allow the next conclusion.

Theorem 5.2. Suppose the measurement y(t) is informative.Then the following

inclusion (external estimate) holds:

X [t] ⊆ X+[t],

in which

X+[t] = {x : (x − x∗(t),K−1
+ (t)(x − x∗(t))) ≤ 1},

whatever be the functions π(t), β(t) of respective classes.
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Remark 5.1. The last theorem indicates that the exact set X [t] lies within the

intersection of sets X+[t] over all functions π(t), β(t) in their respective classes.

Let G(s, t,X [t]), t ≥ t0, s ≥ t, be the reach set of system (17) without state

constraint (19), starting from information set X [t]. Denote F(s, t) = G(s)G(s, t,X [t])

The next proposition is true.

Lemma 5.1. Suppose

max
l

{ρ(l | F(s, t)) − ρ(l | Ry(s)) | (l, l) = 1} > 0, ∀s ∈ (t, t + σ], σ > 0, ∀t ≥ t0.

Then the measurement y(t) is informative, so that one may take α(t) ≡ 1, t ≥ t0.

Remark 5.2. If X 0 ⊃ Ry(t0), then one may find the first point τ∗ of intersection

of F(s, t0) with Ry(s) and presume that from τ∗ onward the last lemma is true.

The time τ∗ may be calculated as follows. Suppose the support function

ρ(l | F(t0, t0)) < ρ(l | Ry(t0)), ∀l.

Then τ∗ will be the smallest root of equation σ(s) = 0,

σ(s) = min
l
{ρ(l | Ry(s)) − ρ(l | F(s)) | (l, l) = 1}.

(Clearly, σ(t0) > 0, so that τ∗ > t0).

We now pass to the calculation of internal ellipsoidal estimates for X [t]. Starting

from relation (26) and applying inequality

(p, C(t)Q(t)C′(t)p)1/2 ≥ (T (t)p, T (t)p)−1/2(T (t)p, S(t)(C(t)Q(t)C′(t))1/2p)

where matrices T (t) = T ′(t) are symmetric and matrices S(t) are orthogonal (S(t)

S′(t) = I), we come to

H(t, x, z, p, p0) ≥ H−(t, x, z, p, p0),

with

H−(t, x, z, p, p0) = (p, A(t)x + B(t)u(t) + C(t)q(t))

−(T (t)p, T (t)p)−1/2(T (t)p, S(t)C(t)p) − (p0, I(h(t, x) > 0)h(t, x)),

and C(t) = (C(t)Q(t)C′(t))1/2.

Selecting w−(t, x, z) = (x − x∗(t),K−1
− (t)(x − x∗(t)) + |z| − 1 with T (t) = K−(t)

and estimating the total derivative dw−(t, x, z)/dt along the scheme above, we arrive

at equations (29) and

K̇− = K−A(t) + A′(t)K− + β(t)K− + r(t)(K−S(t)C(t) + C(t)S′(t)K−)

− β(t)G′(t)R(t)G(t) = 0, K−(t0) = X0(35)
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Here r = r(t) > 0 is a tuning parameter and

β(t) = α(t)/(1 +

∫ ϑ

t

α(s)ds).

Theorem 5.3. The following inclusion (internal ellipsoidal estimate) holds

X [t] ⊇ X−[t],

with

X−(t)) = {x : (x − x∗(t),K−1
− (t)(x − x∗(t)) ≤ 1},

whatever be the orthogonal matrix S(t) and function 0 < r(t) < r0.

In order to check the property of being informative for measurement y(t) one may

use instead of F(s) the internal ellipsoidal approximations

G(t)E−(x∗(t), X−[t])) ⊆ G(t)G(s, t,X−[t])

defined according to [24].

6. Conclusion. In this paper we introduced approximate estimates of solu-

tions V (t, x, z) to the HJB equations that arise in the problem of guaranteed (set-

membership) filtering. These functions V (t, x, z), which are the information states for

this problem, allow one to describe the set-valued guaranteed estimates of the state

vector—the information sets—on the basis of available observations (measurements).

The information states are level sets X [t] of the information states. Upper and lower

estimates for V (t, x, z) thus allow one to calculate the external and internal set-valued

estimates for X [t]. In the case of linear systems these estimates turn out to belong to

certain families of parameterized ellipsoids for which explicit equations are derived. A

proper selection of the parameters (which is yet to be investigated) may allow one to

achieve tight approximations or something close to these. The formulas derived here

introduce one more new type of ellipsoidal solutions to the set-membership estimation

problem (see also [25]).
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