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A NEW NONLINEAR FILTER

ROBERT J. ELLIOTT∗ AND SIMON HAYKIN†

Abstract. A discrete time filter is constructed where both the observation and signal process

have non-linear dynamics with additive white Gaussian noise. Using the reference probably frame-

work a convolution Zakai equation is obtained which updates the unnormalized conditional density.

Our work obtains approximate solutions of this equation in terms of Gaussian sum when second

order expansions are introduced for the non-linear terms.

Acknowledgements. The authors thank NSERC for its continued support.

1. Introduction. The most successful filter has without doubt been the Kalman

filter. This considers noisy observations of a signal process where the dynamics are

linear and the noise is additive and Gaussian. Extensions of the Kalman filter to

cover non-linear dynamics were obtained by taking first order Taylor expansions of

the non-linear terms about the current mean. The resulting filter is the so-called

extended Kalman filter, or EKF.

A popular method in recent years has been the so-called particle filter approach.

However, this is only based on Monte-Carlo simulation.

In this paper the reference probability framework is used to obtain a discrete time

version of the Zakai equation. This looks like a convolution equation and it provides

an update for the unnormalized conditional density of the state process given the

observations. If first order Taylor series approximations are used for the non-linear

terms in the signal and observation processes, the convolution equation can be solved

explicitly and the extended Kalman filter re-derived. Taylor expansions of the non-

linear terms to second order are then considered and approximate solutions in terms

of Gaussian sums obtained.

Detailed proofs and numerical work will appear in [2].

2. Dynamics. Consider non-linear signal and observation processes x, y where

the noise is additive and Gaussian. Suppose the processes are defined on (Ω, F, P )

where w = {wk, k = 0, 1, 2, . . .}, v = {vk, k = 0, 1, 2, . . .} are sequences of indepen-

dent N(0, In), resp. N(0, Im), random variables.
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Suppose for each k = 0, 1, 2, . . .

Ak : Rn → Rn

Ck : Rn → Rm.

are measurable functions.

We suppose the signal dynamics have the form:

(2.1) xk+1 = Ak(xk) +Bkwk+1.

and the observation dynamics have the form

(2.2) Observation yk = Ck(xk) +Dkvk.

To simplify notation we suppose the coefficients are time independent.

Further we suppose that B : Rn → Rn and D : Rm → Rm are symmetric and

non-singular.

Measure Change. We shall follow the methods of Elliott and Krishnamurthy

[3] and show how the dynamics (2.1), (2.2) can be modelled starting with a reference

probability P.

Suppose on (Ω, F, P ) we have two sequences of random variables

x = {xk, k = 0, 1, 2, . . .}

y = {yk, k = 0, 1, 2, . . .}.

We suppose that under P the xk are independent n-dimensional N(0, In) random

variables and the yk are independent N(0, Im) random variables. For x ∈ Rn, y ∈ Rm

write

ψ(x) = (2π)−n/2 exp
(
−
x′x

2

)

φ(y) = (2π)−n/2 exp
(
−
y′y

2

)
.

Here the prime ′ denotes transpose. Define the σ-fields

G = σ{x0, x1, . . . , xk, y0, y1, . . . , yk}

Y = σ{y0, y1, . . . , yk}.

Then Gk represents the (possible) histories of x and y to time k and Yk represents the

history of y to time k.

For any square matrix B write |B| for its determinant. Write

λ0 =
φ
(
D−1(y0 − C(x0))

)

|D|φ(y0)
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and for ℓ ≥ 1

λℓ =
φ
(
D−1(yℓ − C(xℓ))

)

|D|φ(yℓ)
·
ψ

(
B−1(xℓ −A(xℓ−1))

)

|B|ψ(xℓ)
.

For k ≥ 0 define

Λk =
k∏

ℓ=0

λℓ.

We can define a new probability measure P on |Ω, VkGk) by setting

dP

dP

∣∣∣
Gk

= Λk.

For ℓ = 0, 1, 2, . . . define vℓ := D−1
(
yℓ − C(xℓ)

)
. For ℓ = 1, 2, . . . define wℓ :=

B−1
(
xℓ −A(xℓ−1)

)
.

As in [3] we can then prove:

Lemma 2.1. Under the measure P

v = {vℓ, ℓ = 0, 1, 2, . . .}

w = {wℓ, ℓ = 1, 2, . . .}

are sequences of independent N(0, Im) and N(0, In) random variables, respectively.

That is, under the measure P

xℓ = A(xℓ−1) +Bwℓ

yℓ = C(xℓ) +Dvℓ.

However, P is a nicer measure under which to work.

3. Recursive Densities. The filtering problem is concerned with the estimation

of xk, and its statistics, given the observations y0, y1, . . . , yk, that is, given Yk. The

problem would be completely solved if we could determine the conditional density

γk(x) of xk given Yk. That is,

γk(x)dx = P (xk ∈ dx|Yk) = E[I(xk ∈ dx)|Yk].

Using a form of Bayes Theorem, (see [1]), for any measurable function g : Rn → R

E[g(xk)|Yk] =
E[Λkg(xk)|Yk]

E[Λk|Yk]

where the expectations on the right are taken under the measure P . The numerator

E[Λkg(xk)|Yk] is an unnormalized conditional expectation of g(xk) given Yk. The

denominator is the special case of the numerator obtained by taking

g( · ) = 1.
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The map g → E[Λkg(xk)|Yk] is a continuous linear functional and so defines a mea-

sure. We assume this measure has a density αk(x) so that

E[Λkg(xk)|Yk] =

∫

Rn

g(x)αk(x)dx

and heuristically

E[ΛkI(xk ∈ dx)|Yk] = αk(x)dx.

Then

E[g(xk)|Yk] =

∫
Rn g(x)αk(x)dx∫

Rn αk(x)dx

and αk(x) is an unnormalized conditional density of xk given Yk.

Modifying the proof in [3] we have:

Theorem 3.1. αk satisfies the recursion:

(3.1) αk(x) =
φ
(
D−1(yk − C(x))

)

|B| |C|φ(yk)
·

∫

Rn

αk−1(z)ψ
(
B−1

(
x−A(z)

))
dz.

Proof. See [3].

Remark 3.2. This equation provides the recursion for the unnormalized condi-

tional density of xk given Yk. It is a discrete time version of the Zakai equation. The

problem is now to solve this equation.

As shown in the book [1] and the paper [3], when the dynamics are linear, A(x) =

Ax and C(x) = Cx, for suitable matrices A and C, with linear Gaussian noise terms

the integral in (3.1) can be evaluated and a Gaussian density obtained for αk(x).

The extended Kalman filter is obtained below by linearizing A and C and solving

(3.1). We then obtain approximate solutions when second and higher order terms are

included in the approximations of A(x) and C(x).

4. Notation. Recall our model is

Signal xk = A(xk−1) +Bwk ∈ Rn

Observation yk = C(xk) +Dvk ∈ Rm

where A and C can be non-linear functions: A : Rn → Rn, C : Rn → Rm.

Notation 4.1. The transpose of any matrix (or vector) M will be denoted by

M ′,

Write

A(x) =
(
A1(x), . . . , An(x)

)′

C(x) =
(
C1(x), . . . , Cm(x)

)′
.
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If A (resp. C) are (twice) differentiable we shall write

∇A = (∇A1, . . . ,∇An)′ =





∂A1

∂x1
, ∂A1

∂x2
, . . . , ∂A1

∂xn

...
∂An

∂x1
, . . . ∂An

∂xn



 ,

∇C = (∇C1, . . . ,∇Cm)′.

∇2A will denote the matrix of Hessians

∇2A =





∇2A1

∇2A2

...

∇2An





where

∇2Ak =





∂2Ak

∂x2
1

∂2Ak

∂x1∂x2
. . . ∂2Ak

∂x1∂xn

...
∂2Ak

∂xn∂x1
. . . ∂2Ak

∂x2
n



 .

Similarly,

∇2C =





∇2C1

...

∇2Cm



 .

Approximations 4.2. For any µ ∈ Rn we can consider the Taylor expansions

of A and C to second order:

(4.1)
A(z) ≃ A(µ) + ∇A(µ) · (z − µ)

+
1

2
∇2A(µ) · (z − µ)2

(4.2)
C(x) ≃ C

(
A(µ)

)
+ ∇C

(
A(µ)

)
·
(
x−A(µ)

)

+
1

2
∇2C

(
A(µ)

)
·
(
x−A(µ)

)2
.

Here ∇A(µ) · (z − µ) ∈ Rn and ∇2A(µ) · (z − µ)2 denotes the vector

(
(z − µ)′∇2A1(µ)(z − µ), . . . , (z − µ)′∇2An(µ) · (z − µ)

)′
.

From the Gaussian densities involved in the recursion for αk we shall be interested

in scalar quantities of the form:

1

2

(
x−A(µ) −∇A(µ) · (z − µ)

)′
B−2∇2A(µ)(z − µ)2.
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Write ξ = (ξ1, ξ2, . . . , ξn)′ for the vector B−2
(
x−A(µ) −∇A(µ) · (z − µ)

)
. Then

1

2

(
x−A(µ) −∇A(µ) · (z − µ)

)′
B−2∇2A(µ) · (z − µ)2

=
1

2
ξ′∇2A(µ) · (z − µ)2

=
1

2
(ξ1, . . . , ξn)





(z − µ)′∇2A1(µ)(z − µ)
...

(z − µ)′∇2An(µ)(z − µ)





= (z − µ)′H(µ)(z − µ)

where H(µ) is the symmetric matrix defined symbolically by

(4.3)
H(µ) =

1

2
ξ′





∇2A1(µ)
...

∇2An(µ)





=
1

2

(
ξ1∇

2A1(µ) + ξ2∇
2A2(µ) · · · + ξn∇

2An(µ)
)
.

Similarly, for C ∇2C
(
A(µ)

)
·
(
x−A(µ)

)2
will denote the vector

((
x−A(µ)

)′
∇2C1

(
A(µ)

)(
x−A(µ)

)
, . . . ,

(
x−A(µ)

)′
∇2Cm

(
A(µ)

)(
x−A(µ)

))
.

In the exponential involving C terms we shall consider scalar quantities of the

form

1

2

(
y − C

(
A(µ)

))′

D−2 · ∇2C
(
A(µ)

)
·
(
x−A(µ)

)2
.

This can be written

(
x−A(µ)

)′
Z−1(µ)

(
x−A(µ)

)

where Z−1(µ) is the symmetric matrix

(4.4)

1

2
ζ′





∇2C1

(
A(µ)

)

...

∇2Cm

(
A(µ)

)



 =
1

2

(
ζ1∇

2C1

(
A(µ)

)
+ ζ2∇

2C2

(
A(µ)

)
+ · · ·+ ζm∇2Cm

(
A(µ)

))

with ζ = D−2
(
y − C

(
A(µ)

))
.

5. The EKF. We shall take the first two terms in the Taylor expansions of A(x)

and C(x) and show how equation (3.1) can be solved to re-derive the EKF (Extended

Kalman Filter).

Of course, if the dynamics are linear the calculations below show how the Kalman

filter can be derived from (3.1).
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Linear Approximations. Signal The signal has dynamics

xk = A(xk−1) +Bwk ∈ Rn.

If µk−1 is the conditional mean determined at time (k − 1) we consider the first

two terms in the Taylor expansion of A(xk−1) about µk−1 and write

(5.1) xk ≃ A(µk−1) + ∇A(µk−1)(xk−1 − µk−1) +Bwk.

Similarly for the

Observation yk = C(xk) +Dvk ∈ Rm

we take the first two terms of the Taylor expansion about A(µk−1) and write

(5.2) yk ≃ C
(
A(µk−1)

)
+ ∇C

(
A(µk−1)

)(
xk −A(µk−1)

)
+Dvk ∈ Rm.

We are supposing that the conditional density of xk−1 given Yk−1 is N
(
µk−1,

Σk−1

)
, that is the (normalized) conditional density of xk−1 given Yk−1 is

(5.3)
∣∣Σk−1

∣∣−1/2
ψ

(
Σ−1

k−1(x − µk−1)
)
.

Therefore, αk−1(z) ∼ ψ
(
Σ−1

k−1(z − µk−1)
)
. Let us note that

(5.4)

x̂k|k−1 : = E[xk|Yk−1]

= E[A(xk−1) +Bwk]Yk−1]

= E[A(xk−1)|Yk−1]

≃ E[A(µk−1) + ∇A(µk−1)(xk−1 − µk−1)|Yk−1]

= A(µk−1)

as µk−1 = E[xk−1|Yk−1].

In the paper of Ito and Xiong [5] a more accurate approximation is given using

quadrature for E[A(xk−1)|Yk−1]. This could be used rather than A(µk−1). Also write

(5.5)

Σk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
′|Yk−1]

≃ E
[(
A(xk−1) +Bwk −A(µk−1)

)(
A(xk−1 +Bwk −A(µk−1)

)′
|Yk−1

]

≃ E
[(
∇A(µk−1)(xk−1 − µk−1) +Bwk

)

×
(
∇A(µk−1)(xk−1 − µk−1) +Bwk

)′
|Yk−1

]

= ∇A(µk−1)Σk−1∇A(µk−1)
′ +B2.

Recall the matrix inversion Lemma (MIL:)

Lemma 5.1. For suitable matrices

(B +AΣA′)−1 = B−1 −B−1A(Σ−1 +A′B−1A)−1A′B−1.
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Corollary 5.2.

Σ−1
k|k−1 = B−2 −B−2∇A(µk−1)

(
Σ−1

k−1 +∇A(µk−1)
′B−2∇A(µk−1)

)−1
∇A(µk−1)

′B−2.

Linear algebra and the MIL then enable us to obtain the following result.

Theorem 5.3 (EKF). Suppose

x̂k−1|k−1 = E[xk−1|Yk−1]

is N(µk−1Σk−1). Then, approximately, x̂k|k is N(µk,Σk) where

(5.6)
Σk = Σk|k−1 − Σk|k−1∇C

(
A(µk−1)

)′

×
(
D2 + ∇C

(
A(µk−1)

)
Σk|k−1∇C

(
A(µk−1)

))−1

∇C
(
A(µk−1)

)
Σk|k−1

and

(5.7)
µk = A(µk−1) + Σk|k−1∇C

(
A(µk−1)

)′

×
(
D2 + ∇C

(
A(µk−1)

)
Σk|k−1∇C

(
A(µk−1)

)′)−1(
yk − C

(
A(µk−1)

))
.

Proof. See [2].

6. A New Nonlinear Filter. We extend the EKF by including second order

terms in the approximations for A(x) and C(x).

This has two consequences:

1) we can no longer explicitly evaluate the integral I. We approximate this using

Gauss-Hermite quadrature rules after some algebra.

2) when the integral is multiplied by φ
(
D−1(yk − C(x))

)
we would like to obtain

Gaussian densities. By modifying the algebra of Section 5 we are able to do

this

Expansions 6.1. We recall the second order expansions (4.1) and (4.2)

(6.1) A(z) ≃ A(µ) + ∇A(µ) · (z − µ) +
1

2
∇2A(µ) · (z − µ)2

(6.2) C(x) ≃ C
(
A(µ)

)
+ ∇C

(
A(µ)

)
·
(
x−A(µ)

)
+

1

2
∇2C

(
A(µ)

)
·
(
x−A(µ)

)2
.

Theorem 6.2. Suppose αk−1(z) is given by a weighted sum of Gaussian densities:

αk−1(z) =

N(k−1)∑

i=1

λk−1,i exp
(
−

1

2

(
x− µk−1,i

)′
Σ−1

k−1,i

(
x− µk−1,i

))
.
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Then

αk(x) ≃

N(k−1)∑

i=1

m(k,i)∑

j=1

λk,i,j exp
(
−

1

2

(
x− µk,i,j

)
Σ−1

k,i

(
x− µk,i,j

))

where

Σk,i,j = Γk,i,j − Γk,i,j∇C
(
A(µk−1,i)

)′

×
(
D2 + ∇C

(
A(µk−1

))
Γk,i,j∇C

(
A(µk−1,i)

)′)−1

∇C
(
A(µk−1,i)

)
Γk,i

and

µk,i,j = A(µk−1)

+ Γk,i,j∇C
(
A(µk−1,i)

)(
D2 + ∇C

(
A(µk−1,i)

)
Γk,i,j∇C

(
A(µk−1,i)

)′)−1

×
(
yk − C

(
A(µk−1,i)

)
− Σk,i,jγk,i,j

)
.

The values of Γk,i,j , gk,i,j and λk,i,j are given, respectively, by (6.19), (6.12) and

(6.18).

Proof. Suppose that α0(z) is a sum of Gaussian densities:

α0(z) =

N(0)∑

i=1

λoi exp
(
−

1

2
(z − µoi)

′Σ−1
oi (z − µo,i)

)

with

λoi = ρoi(2π)−n/2|Σoi|
−1/2 > 0.

We can, and shall, suppose α0(z) is a normalized density, that is

∫

Rn

α0(z)dz = 1,

so

N(0)∑

i=1

ρoi = 1.

Later (unnormalized) conditional densities are obtained from the recursion (3.1):

αk(x) =
φ
(
D−1(yk − C(x))

)

|B| |D|φ(yk)

∫

Rn

αk−1(z)ψ
(
B−1

(
x−A(z)

))
dz.

Suppose αk−1(z) is approximated as a sum of Gaussian densities:

αk−1(z) ≃

N(k−1)∑

i=1

λk−1,i exp
(
−

1

2
(z − µk−1,i)

′Σ−1
k−1,i(z − µk−1,i)

)
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where again λk−1,i = ρk−1,i(2π)−n/2|Σk−1,i|
−1/2 > 0 and

N(k−1)∑
i=1

ρk−1,i = 1. Then

from the recursion (3.1)

(6.3)

αk(x) ≃
φ
(
D−1(yk − C(x))

)

|B| |D|φ(yk)

∫

Rn

N(k−1)∑

i=1

λk−1,i

× exp
(
−

1

2

[
(z − µk−1,i)

′Σ−1
k−1,i(z − µk−1,i)

+
(
x−A(z)

)′
B−2

(
x−A(z)

)])
dz.

Consider one integral term in the sum. To simplify the notation we shall drop

the suffices for the moment. Using the second order Taylor expansion for A(z) the

integral term is approximately:

(6.4)

Ik−1,i =

∫

Rn

exp
(
−

1

2

[
(z − µ)′Σ−1(z − µ)

+
(
x−A−∇A(z − µ) −

1

2
∇2A(z − µ)2

)′
B−2

×
(
x−A−∇A(z − µ) −

1

2
∇2A(z − µ)2

])
dz.

Here, as in Section 5,

A = A(µk−1,i) ∈ Rn

∇A = ∇A(µk−1,i) ∈ Rn×n

and ∇2A is the matrix of Hessians.

Dropping the (z − µ)4 term this is approximately

≃

∫

Rn

exp (−
1

2

[
(z − µ)′Σ−1(z − µ)

+
(
x−A−∇A(z − µ)

)′
B−2

(
x−A−∇A(z − µ)

)]
G(x, z)dz

where

G(x, z) = exp
(1

2

(
x−A−∇A(z − µ)

)′
B−2∇2A(z − µ)2

)

= exp
(1

2
(z − µ)′H(x, µ)(z − µ)

)

in the notation of (4.3), where

H(x, µ) =
1

2

(
x−A−∇A(z − µ)

)′
B−2





∇2A1

...

∇2An



 .

Completing the square we have

Ik−1,i ≃ K(x)

∫

Rn

exp
(
−

1

2
(z − σkiδki)

′σ−1
ki (z − σkiδki)

)
Gk,i(x, z)dz
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where

(6.5) σ−1
ki = Σ−1

k−1,i + ∇A(µk−1,i)
′B−2∇A(µk−1,i)

(6.6)
δk,i = Σ−1

k−1,µµk−1,i + ∇A(µk−1,i)
′B−2

(
x−A(µk−1,i)

+ ∇A(µk−1,i)µk−1,i

)

(6.7)
Gk,i(x, z) = exp

(1

2

(
x−A(µk−1,i) −∇A(µk−1,i)(z − µk−1,i)

)′

×B−2∇2A(µk−1,i)(z − µk−1,i)
2
)

and

(6.8)
K(x) = exp

(1

2

(
δ′kiσkiδki − µ′

k−1,iΣ
−1
k−1,iµk−1,i +

(
x−A(µk−1,i)+

∇A(µk−1,i)µk−1,i

)′
×B−2

(
x−A(µk−1,i) + ∇A(µk−1,i)µk−1,i

)))
.

The problem is now to evaluate the integral
∫

Rn

exp
(
−

1

2
(z − σkiδki)

′σ−1
ki (z − σkiδki)

)
Gki(x, z)dz.

As in Ito and Xiong, [5], one way is to use Gauss-Hermite quadrature (of which

the Julier-Uhlmann unscented filter is a special case). That is, we assume

σki = S′
kiSki

and change coordinates writing

z = S′
kit+ σkiδki, t ∈ Rn.

The integral is then

(6.9) |Ski|

∫

Rn

exp
(
−
t′t

2

)
G(x, S′

kit+ σkiδki)dt.

Using the Gauss-Hermite formula this is approximately

m(k,i)∑

j=1

ωk,i,jG(x, S′
kitj + σkiδki)

=

m(k,i)∑

j=1

ωk,i,j exp
((
x−A(µk−1,i) −∇A(µk−1,i) · (S

′
kitj + σkiδki − µk−1,i)

)′
γk,i,j

)

where

(6.10)

γk,i,j =
1

2
B−2

(
S′

kitj + σkiδki − µk−1,i

)′





∇2A1(µk−1,i)
...

∇2An(µk−1,i)




(
S′

kitj + σkiδki − µk−1,i

)
.
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The order of approximation m(k, i) can be chosen. Weights ωk,i,j are determined

as in Golub [4]. In fact if J is the symmetric tridiagonal matrix with a zero diagonal

and Ji,i+1 =
√
i/2 , 1 ≤ i ≤ m(k, i) − 1 then the tj are the eigenvalues of J and

the ωk,i,j are given by (vi)(1)2, where vi(1) is the first element of the ith normalized

eigenvector of J.

As our integrand in (6.9) is not a N(0, In) density in our case

ωk,i,j = (2π)n/2|Ski|ωk,i,j .

Write Xi = x−A(µk−1,i) and recall from (6.6) that

δk,i = Σ−1
k−1,iµk−1,i + ∇A(µk−1,i)

′B−2
(
Xi + ∇A(µk−1,i)µk−1,i

)
.

Also write

Mkij = S′
kitj + σki

(
Σ−1

k−1,iµk−1,i + ∇A(µk−1,i)
′B−2∇A(µk−1,i)µk−1,i

)
− µk−1,i

and

Fki = σki∇A(µk−1,i)B
−2.

Then

(6.11)
Ik−1,i ≃

m(k,i)∑

j=1

ωk,i,jKki exp
[1

2

(
Xi −∇A(µk−1,i)(Mkij + FkiXi)

)′

× (Mkij + FkiXi)
′∇2A(µk−1,i) · (Mkij + FkiXi)

]
.

Here again ∇2A(µk−1,i) denotes the matrix of Hessians.

Consider one term in this sum. Retaining only terms of order
∣∣(x−A(µk−1,i)

)∣∣2 = |Xi|
2 and dropping suffices this is:

ωK(x) exp
[1

2
X ′H−1X + g′X + κ

]

where:

(6.12)

H−1 = H−1
kij = 2(I −∇AF )′B−2 ·M ′(∇2A)F

− (B−2∇AM)′ · (∇2A)F

g = gkij =
1

2
(I −∇AF )′B−2

(
M ′(∇2A)M

)

− F ′(∇2A)M ′B−2∇A′M

and

κ = κkij = −M ′∇AB−2 ·
(
M ′(∇2A)M

)
.
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Therefore,

Ik−1,i ≃

m(k,i)∑

j=1

ωkijKki(x) exp
[1

2
X ′

iH
−1
kijXi + g′kijXi + κkij

]

where Xi = x−A(µk−1,i).

Substituting in (6.3)

αk(x) ≃
φ
(
D−1(yk − C(x))

)

|B| |D|φ(yk)

N(k−1)∑

i=1

m(k,i)∑

j=1

λk−1,iωkijKki(x)

× exp
[1

2
X ′

iH
−1
kijXi + g′kijXi + κkij

]
.

Write

(6.13) ρkij =
λk−1,iωkij exp(κkij)

|B| |D|φ(yk)

so

αk(x) ≃

N(k−1)∑

i=1

m(k,i)∑

j=1

ρkijφ
(
D−1(yk − C(x))

)
Kki(x) exp

[1

2
X ′

iH
−1
kijXi + g′kijXi

]
.

Consider one term only in the sum and replace C(x) by its second order Taylor

expansion about A(µk−1,i). Again, drop suffices to simplify the notation. Then

Lkij(x) = L(x) : = ρφ
(
D−1

(
yk − C(x)

))
K(x)

× exp
[1

2
(x−A)′H−1(x−A) + g′(x−A)

]

≃ ρK(x) exp
[1

2
X ′

iH
−1Xi + g′Xi

]

× exp
[
−

1

2

(
y − C −∇CXi −

1

2
X ′

i∇
2CXi

)′

×D−2
(
y − C −∇CXi −

1

2
X ′

i∇
2CXi

)

Here again C = C
(
A(µk−1,i)

)
∈ Rm

∇C = ∇C
(
A(µk−1,i)

)
∈ Rm×n

∇2C =





∇2C1

(
A(µk−1,i)

)

...

∇2Cm

(
A(µk−1,i)

)





A = A(µk−1,i) ∈ Rn

and

Xi = x−A(µk−1,i) = x−A.
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Keeping only terms of order |x−A|2 = |Xi|
2 this gives

L(x) ≃ ρK(x) exp
(
−

1

2

(
y − C −∇CXi)

)′
D−2

(
y − C −∇CXi

))

× exp
(1

2
(y − C)′D−2 ·X ′

i∇2CXi

)
exp

[1

2
X ′

iH
−1Xi + g′Xi

]
.

As in (4.4) we can write

exp
(1

2
(y − C)′D−2 ·X ′

i∇
2CXi

)

as

exp
(1

2
X ′

iR
−1Xi

)

where

R−1 =
(
yk − C

(
A(µk−1,i)

))′

D−2 · ∇2C
(
A(µk−1,i)

)
.

Write

Z−1 := R−1 +H−1.

Then dropping suffices

L(x) ≃ ρK(x) exp
[1

2
X ′

iZ
−1Xi + g′Xi

]

× exp
(
−

1

2

(
y − C −∇CXi

)′
D−2

(
y − C −∇CXi

))

and

αk(x) ≃

N(k−1)∑

i=1

m(i,j)∑

j=1

ρk,i,jLk,i,j(x).

Recalling X = Xi = x−A(µk−1,i) and substituting for K(x) from (6.8) we have

Lkij(x) = L(x) ≃ ρ exp
(1

2

[(
Σ−1µ+ ∇AB−2(X + ∇Aµ)

)′

× σk

(
Σ−1µ+ ∇AB−2(X + ∇Aµ)

)

− µ′Σ−1µ+ (X + ∇Aµ)′B−2(X + ∇Aµ)
])

× exp
(1

2
X ′Z−1X + g′X

)

× exp
(
−

1

2

(
y − C −∇CX

)′
D−2

(
y − C −∇CX

))
.

Collecting terms in X = Xi = x−A(µk−1,i) this is:

= G exp
(
−

1

2
(X ′Σ−1X − 2∆′X)

)
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where

(6.14)
Σ−1 = Σ−1

kij = ∇C
(
A(µk−1,i)

)′
D−2∇C

(
A(µk−1,i)

)

+B−2 −B−2∇A(µk−1,i) · σk,i∇A(µk−1,i)
′B−2 − Z−1

kij

and

(6.15)

∆ = ∆kij

= ∇C
(
A(µk−1,i)

)
D−2

(
yk − C

(
A(µk−1,i

))
−B−2∇A(µk−1,i)µk−1,i

+ gk,i,j +B−2∇A(µk−1,i)

× σk,i

(
Σ−1

k−1,iµk−1,i + ∇A(µk−1,i)
′B−2∇A(µk−1,i)µk−1,i

)
.

Further

(6.16)
G = Gkij = ρ exp

(1

2

(
Σ−1µ+ ∇A ·B−2∇A′µ

)′
σ
(
Σ−1µ+ ∇AB−2∇A′µ

)

− µ′Σ−1µ− µ′∇A′B−2∇Aµ−
1

2
(y − C)′D−2(y − C)

)
.

Completing the square we have

(6.17) Lk,i,j(x) = L(x) ≃ λk,i,j exp
[
−

1

2
(Xi − Σ∆)′Σ−1(Xi − Σ∆)

]

where

(6.18) λk,i,j = Gkij exp
(1

2
∆′Σ∆

)
.

Now as in (5.5)

Σk|k−1,i := ∇A(µk−1,i)Σk−1,i∇A(µk−1,i)
′ +B2

is an approximate conditional variance of xk, given Yk−1, if

x̂k−1|k−1 ∼ N
(
µk−1,i,Σk−1,i

)
.

Then, as in Corollary 5.2

Σ−1
k|k−1,i = B−2 −B−2∇A(µk−1,i)σk,i∇A(µk−1,i)

′B−2

so, from (6.14)

Σ−1 = Σ−1
k,i,j = ∇C′D−2∇C + Σ−1

k|k−1,i − Z−1.

Write Γ−1 = Γ−1
k,i,j := Σ−1

k|k−1,i − Z−1
k,i,j so, using the MIL, Lemma 5.1

(6.19) Γ = Σk|k−1,i − Σk|k−1,i

(
Σk|k−1,i − Zk,i,j

)−1
Σk|k−1,i .
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Also, as

Σ−1 = Σ−1
k,i,j = ∇C′D−2∇C + Γ−1

again using Lemma 5.1

(6.20) Σ = Σk,i,j = Γ − Γ∇C′(D2 + ∇CΓ∇C′)−1∇CΓ.

Finally we evaluate

µk,i,j = Σk,i,j∆k,i,j .

Dropping suffices, from (6.14) and (6.15) this is

[
Γ − Γ∇C′(D2 + ∇CΓ∇C′)−1∇CΓ

]
∇C′D−2(y − C)

+ Σ
[
B−2∇Aσ

(
Σ−1µ+ ∇A′B−2Aµ)

)]
+ Σg − ΣB−2∇Aµ

=
[
Γ∇C′ − Γ∇C′(D2 + ∇CΓ∇C′)−1(∇CΓ∇C′ +D2 −D2)

]
D−2(y − C)

+ Σ
[
B−2∇A · σ

(
Σ−1 + ∇A′B−2∇A

)
µ
]
+ Σg − ΣB−2∇Aµ.

Recalling from (6.5) that

σ = (Σ−1 + ∇A′B−2∇A)−1

this is

= Γ∇C′(D2 + ∇CΓ∇C′)−1(y − C) + Σg.

Therefore, in terms of the variable

X = Xi = x−A(µk−1,i)

the mean is

Σk,i,j∆k,i,j = Γ∇C′(D2 + ∇CΓ∇C′)−1(y − C) + Σg

so in terms of the original variable x the mean is

= A+ Γ∇C′(D2 + ∇CΓ∇C′)−1(y − C) − Σg.

That is, now writing in suffices, we have obtained a Gaussian density in the sum

which determines αk(x) which has a variance

Σk,i,j = Γk,i,j − Γk,i,j∇C
(
A(µk−1,i)

)′(
D2 + ∇C

(
A(µk−1,i)

)
Γk,i,j

×∇C
(
A(µk−1,i)

)′)−1

×∇C
(
A(µk−1,i

)
Γk,i,j ,
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where

Γ−1
k,i,j = Σ−1

k|k−1,i − Z−1
k,i,j ,

and a mean

µk,i,j = A(µk−1,i) + Γk,i,j∇C
(
A(µk−1,i)

)

×
(
D2 + ∇C

(
A(µk−1,i)

)
Γk,i,j∇C

(
A(µk−1,i)

)′)−1

×
(
yk − C

(
A(µk−1,i)

))
− Σk,i,jgk,i,j .

Here gk,i,j is given by (6.12).

Also, the new weights λk,i,j are given by (6.18).

Therefore,

αk(x) ≃

N(k−1)∑

i=1

m(k,i)∑

j=1

λk,i,j exp
(
−

1

2
(x− µk,i,j)

′Σ−1
k,i,j(x− µk,i,j

))
.

Pruning can be effected by selecting only so many of the terms based on the size

of the λk,i,j .

7. Conclusion. A discrete time version of the Zakai equation has been obtained.

Using first order linearizations the equation can be solved and the extended Kalman

filter derived.

Second order Taylor expansions of the non-linear terms were then considered

and approximate solutions of the Zakai equation derived in terms of Gaussian sums.

Formulae for updating the means, variances and weights of the terms in the sums are

given. Detailed proofs will appear in [2].
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