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RECURSIVE SYSTEM IDENTIFICATION BY STOCHASTIC

APPROXIMATION∗

HAN-FU CHEN†

Abstract. The convergence theorems for the stochastic approximation (SA) algorithm with

expanding truncations are first presented, which the system identification methods discussed in the

paper are essentially based on. Then, the recursive identification algorithms are respectively defined

for the multivariate errors-in-variables systems, Hammerstein systems, and Wiener systems. All es-

timates given in the paper are strongly consistent.
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1. Introduction. System identification is an important step to control an object

when its model is unknown. When the system is parameterized, then the task of

system identification is to estimate the unknown parameters contained in the system.

One may first collect data with fixed sample size, and then derive the estimates by

minimizing some performance index based on the collected data. The minimization

may be carried out iteratively in order to use information contained in the data as

completely as possible. This type of estimation is usually called as the block algorithm

in contrast to the recursive algorithm.

The block algorithm sometimes is not satisfactory, because having obtained the

estimate based on the data with sample size N, one has to compute the estimate from

beginning if some new data arrive. This makes computation rather time-consuming,

and in this case the recursive methods may be more attractive. Recursive system

identification consists in obtaining the new estimate by modifying the immediately

past estimate by using the new data. In other words, the estimate is updated on-line.

This may greatly save the computational time, although the information contained in

data may not fully be used.

The least-squares (LS) method [8, 14, 27] probably is most commonly used when

estimating parameters by optimizing some index. The LS estimate can also be derived

in a recursive way when the identified system is linear. However, the LS method may

lead to a biased estimate in a correlated noise case even the system is linear. Further,

the LS estimate cannot be calculated recursively for nonlinear systems in general.

Stochastic approximation (SA) pioneered by [31] and further developed by many
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researchers in statistics and in system and control (see, e.g., [6, 7, 9, 17, 24-26, 28-30,

32, 36] among others) is aimed at seeking roots of an unknown function, when the

function can be observed at any point in its region of definition, but the observations

may be corrupted by noise.

This paper concerns identification of the Hammerstein systems, Wiener systems,

and errors-in-variables systems. It is interesting to note that although there are enor-

mous number of papers on this issue, almost all of them are on block algorithms and

only a few of them concern a.s. convergence. To fill the gap the author with co-authors

for recent years have been working on recursive and a.s. convergent identification al-

gorithms for such kind of systems. We have applied the SA method developed in

[9] to identifying various systems and succeeded in providing recursive and strongly

consistent identification algorithms. These results published in a set of papers are

summarized here with key points of the proof outlined.

The rest of the paper is arranged as follows. The SA algorithm with expanding

truncations, which the identification algorithms of the paper are essentially based on,

is introduced in Section 2. The recursive identification for multivariate EIV systems is

presented in Section 2, while the corresponding results for Hammerstein and Wiener

systems in Sections 3 and 4, respectively. Some concluding remarks are given by the

end of the paper.

2. SA Algorithms with Expanding Truncations. Let J be the root set of

a function f(·) : Rl → Rl, J
△
= {x ∈ Rl : f(x) = 0}. Assume f(·) is unknown, but

it can be observed at any x ∈ Rl, and the observations are noise-corrupted. Let xk

denote the kth approximation to the root set J, and let the observation be carried

out at this point, i.e., the (k + 1)th observation is

yk+1 = f(xk) + ǫk+1 with ǫk+1 being the observation noise.(1)

For the single root case, i.e., for the case where J = x0 the classical Robbins-

Monro (RM) algorithm [31] proposes to estimate x0 by the following recursion

xk+1 = xk + akyk+1 with ak > 0, ak → 0,

∞∑

k=1

ak = ∞.

However, for the desired convergence xk −−−−→
k→∞

x0 a set of restrictive conditions [29,

31] on f(·) and ǫk+1 are needed, which, unfortunately, are hardly to be satisfied for

many problems.

To overcome the difficulty we modify the RM algorithm by truncating it at ex-

panding bounds. Let {Mk} be a sequence of positive numbers increasingly diverging

to infinity, and let x∗ be a fixed point in Rl. Arbitrarily fix an initial value x0, and
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recursively define xk by the following SA algorithm with expanding truncations:

xk+1 = (xk + akyk+1)I[‖xk+akyk+1‖≤Mσk
] + x∗I[‖xk+akyk+1‖>Mσk

],(2)

σk =

k−1∑

i=1

I[‖xi+aiyi+1‖>Mσi
], σ0 = 0,(3)

where I[A] is the indicator of an ω−set A: I[A] = 1 if ω ∈ A, and I[A] = 0 if ω 6∈ A.

The observation noise ǫk+1 may depend on xk

Let us list conditions to be used.

A1. ak > 0, ak −−−−→
k→∞

0 and
∑∞

k=1 ak = ∞.

A2. There exists a continuously differentiable function (not necessarily being

nonnegative) v(·) : Rl → R such that

sup
δ≤d(x,J)≤∆

fT (x)vx(x) < 0(4)

for any ∆ > δ > 0, where d(x, J)
△
= inf

y
{‖x − y‖ : y ∈ J} and vx(·) denotes the

gradient of v(·). Further, v(J)
△
= {v(x) : x ∈ J} is nowhere dense, and x∗ used in (2)

is such that v(x∗) < inf‖x‖=c0
v(x) with ‖x∗‖ < c0 for some c0 > 0 .

A3. f(·) is measurable and locally bounded.

Denote by (Ω,F , P ) the probability space. Let ǫk+1(·, ·) : (Rl × Ω,Bl × F) →
(Rl × Bl) be a measurable function defined on the product space, and the noise ǫk+1

be given by

ǫk+1 = ǫk+1(xk, ω), ω ∈ Ω.

A4. For the fixed sample path ω under consideration the following limit takes

place:

lim
T→0

lim sup
k→∞

1

T
‖

m(nk,Tk)
∑

i=nk

aiǫi+1(xi(ω), ω)‖ = 0, ∀Tk ∈ [0, T ](5)

along the subscripts {nk} of any convergent subsequences xnk
(ω), where

m(k, T )
△
= max

{

m :
m∑

i=k

ai ≤ T
}

.(6)

The algorithm (1)–(3) is considered for a fixed ω, but ω in xi(ω) is often sup-

pressed.

General Convergence Theorem (GCT). Let {xk} be given by (1)–(3) with

a given initial value x0. Assume A1-A3 hold. Then, the distance between xk and J,

d(xk, J) −−−−→
k→∞

0 for any sample paths (ω) for which A4 holds.
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For the proof of the theorem we refer to [9]. The idea of expanding truncation was

originally proposed in [17]. The method has further been developed incorporating with

the trajectory subsequence (TS) analysis method, which makes it possible to verify

A4 only along nk of any convergent subsequences {xnk
} rather than along the whole

sequence {xk}. Due to such a relaxation, SA algorithms with expanding truncations

with TS analysis method have successfully solved a series of problems arising from

systems and control [10-13, 15].

Remark 1. GCT remains true, if the condition v(x∗) < inf‖x‖=c0
v(x) in A2 is

replaced by

v(x∗) < inf
{k:‖xk‖≥c0}

v(xk)(7)

for the sample path under consideration, where {xk} is recursively given by (2),(3).

Remark 2. If
∑∞

k=1 akǫk+1 <∞, then A4 is fulfilled.

Remark 3. The selection of {Mk} defines the tolerated divergence rate of {xk}.
This is because by (2) and (3)

‖xk+1‖ ≤ ‖x∗‖ ∨Mσk
≤ ‖x∗‖ ∨Mk−1 ≤Mk−1 for sufficiently large k,

where a ∨ b means the maximum of a and b.

Remark 4. Under the conditions of GCT {xk} given by (1)–(3) is bounded, and

hence the truncation in (2) ceases in a finite number of steps, and the asymptotic

behavior of {xk} is the same as that given by the RM algorithm.

Example. We now give an example showing that the RM algorithm fast di-

verges even though the observations are free of noise, while the SA algorithm with

expanding truncations is convergent. Let f(x) = −(x− 10)3, ak = 1
k+1 , and yk+1 =

f(xk). According to the RM algorithm xk+1 = xk − 1
kyk+1, the computation gives

x0 = 0, x1 = −1000, x2 = 515149400, . . . . In contrast to this, the SA algorithm

with expanding truncations converges to the root 10 of −(x− 10)3 even in the noise

environment: yk+1 = f(xk) + ǫk+1, ǫk+1 − 0.9ǫk = wk+1 + 0.5wk, wk ∈ N (0, 0.1).

With Mk = 2k+1, x∗ = 0.5, the computation gives x0 = 0, x100 = 9.26, x400 =

9.61, . . . .

Consider the linear function case f(x) = −Fx + b, where F is an arbitrary n ×
m−matrix and b is an n−vector. It is clear that f(x) = 0 is solvable if and only if

FF+b = b, where F+ denotes the pseudo-inverse of F. In this case for both −Fx+ b

and −FTFx+FT b the root set J = {F+b+(I−F+F )c, ∀c ∈ Rm} is the same. Since

at the right-hand side of the algorithm (2) the sign “+” is for ak, it is convenient to

deal with −FTFx+ FT b rather than −Fx+ b by noticing that −FTF ≤ 0.

Assume yk+1 = −FTFxk + FT b+ ǫk+1. Let us check in the linear case if we can

simplify conditions used in GCT.
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As v(x) required in A2 we may take

v(x) = (−FTFx+ FT b)T (−FTFx+ FT b).(8)

It is clear that (4) holds and v(J) = 0. Condition A2 is automatically satisfied if

F+F = I. If F+F 6= I, then J is a connected but unbounded set in Rm, and hence

the condition v(x∗) < inf‖x‖=c0
v(x) may not be satisfied however large c0 is taken.

Let V
△
= I − F+F. Then V yk+1 = V ǫk+1.

By (2),(3) it follows that

V xk+1 = (V xk + akV ǫk+1)I[‖xk+akyk+1‖≤Mσk
] + V x∗I[‖xk+akyk+1‖>Mσk

].(9)

From (9) it is seen that {V xk} is uniformly bounded for those sample paths for which

the following condition S5 holds.

A5.
∑∞

k=1 akV ǫk+1 <∞.

Consequently, (7) is satisfied for those ω for which A5 holds.

It is worth noting that the following A6 implies both A4 and A5:

A6.
∑∞

k=1 akǫk+1 <∞.

GCT for Linear Functions. In the case f(x) = −(FTFx + FT b), assume

A1 holds. Then {xk} recursively given by (1)-(3) is uniformly bounded and d(xk, J)

−−−−→
k→∞

0 for those ω for which A4 and A5 hold, where J = {F+b+ (I − F+F )c ∀c ∈
Rm}, the root set of f(·). Moreover, if for some ω A6 holds, then xk converges to

some point in J as k tends to infinity.

This theorem follows from GCT as explained above except the last assertion,

which is given in [18].

3. Multivariate EIV Systems. Consider the multi-input multi-output

(MIMO) system

A(z)y0
k = B(z)u0

k,(10)

where z is the backward-shift operator, and u0
k and y0

k are m-input and n-output,

respectively. They are observed with additive noises ξk and ηk:

yk = y0
k + ξk, uk = u0

k + ηk.(11)

The problem is to estimate the coefficients contained in the matrix polynomials

A(z) = I +A1z + · · · +Asa
zsa ,(12)

and

B(z) = B1z +B2z
2 + · · · +Bsb

zsb(13)
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on the basis of the noisy observations {uk} and {yk}.
Identification of EIV systems has been attracting a considerable attention from

researchers of control and statistics, e.g., [1, 2, 16, 33, 34] among others, but in the

existing literature almost all estimates are for SISO systems and generated by block

algorithms. We intend to give recursive and strongly consistent estimates for the

matrix coefficients in (12) (13). For this we first list conditions to be used.

B1. The input {u0
k} is an ARMA process

P (z)u0
k = Q(z)εk(14)

with

P (z) = I + P1z + · · · + Psp
zsp , Q(z) = I +Q1z + · · · +Qsq

zsq .(15)

B2. A(z) and P (z) are stable, i.e., all roots of detA(z) and detP (z) are outside

the closed unit disk.

B3. ∆k
△
= [ξT

k , η
T
k , ε

T
k ]T is a sequence of iid random vectors with E∆k = 0 and

E∆k∆T
k

△
= R∆

△
=







Rξ Rξη Rξǫ

Rηξ Rη Rηǫ

Rǫξ Rǫη Rǫ






.

Let us present the n + m− observation process zk = [yT
k , u

T
k ]T in the ARMA form.

Set λ
△
= max(sa, sb, sp, sq) and Ai

△
= 0, Bj

△
= 0, Ps

△
= 0, Qt

△
= 0 respectively for

i > sa, j > sb, s > sp, t > sq, and set

G(z)
△
=

[

A(z) −B(z)

0 P (z)

]

△
= I +G1z + · · · +Gλz

λ with Gi =

[

Ai −Bi

0 Pi

]

,

(16)

S(z)
△
=

[

A(z) −B(z) 0

0 P (z) Q(z)

]

= S0 + S1z + · · · + Sλz
λ,

(17)

where A(z), B(z), P (z), and Q(z) are given by (12),(13),(14), and (15), respectively.

Then the observation process satisfies the following equation:

G(z)zk = S(z)∆k.(18)

We now derive the multivariate Yule-Walker equation [35, 37] of the observation

process. Noticing that the dimension of ∆k is n + 2m while the dimension of zk is

n+m, we see that (18) is not a standard multivariate ARMA process.
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Since G(z) is stable by B2 and ∆k is iid with E‖∆k‖2 < ∞ by B3 , {zk} is a

stationary and ergodic process with E‖zk‖2 <∞. Hence,

Ezkz
T
k−i

△
= Ri = lim

N→∞

1

N

N∑

k=1

zkz
T
k−i.(19)

Set

φT
k−1

△
= [zT

k−1, · · · , zT
k−λ], ψT

k−λ−1
△
= [zT

k−λ−1, z
T
k−λ−2, · · · , zT

k−λ−µ],(20)

χT
k−1

△
= [ζT

k−1, · · · , ζT
k−λ], G

△
=
[

G1, · · · , Gλ

]

,(21)

where µ = λ(n+m) and ζT
k

△
= [ξT

k , η
T
k ].

Then by (10),(11), and (14) we have

zk = −Gφk−1 +Gχk−1 + [ξT
k , η

T
k + (Q(z)εk)T ]T .(22)

By (19) it follows that

Γ
△
= Eφk−1ψ

T
k−1−λ =







Rλ Rλ+1 · · · Rλ+µ−1

...
...

...

R1 R2 · · · Rµ







(23)

Ezkψ
T
k−λ−1 =

[

Rλ+1, · · · , Rλ+µ

]
△
= W.(24)

By B3 and by noticing sq ≤ λ we have Eχk−1ψ
T
k−λ−1 = 0, and E[ξT

k , η
T
k +(Q(z)εk)T ]T

ψT
k−λ−1 = 0.

Consequently, by (22)-(24) we derive the multivariate Yule-Walker equation:

GΓ +W = 0.(25)

Remark 5. The Yule-Walker equation (25) is equivalent to

ΓΓTGT + ΓWT = 0,(26)

and the solution to (26) composes a set:

J
△
= {G = −WΓ+ +G0(I − ΓΓ+), ∀G0 ∈ R(n+m)×λ(n+m)}.(27)

If ΓΓ+ = I, then G is uniquely defined: G = −WΓ+.

In order to estimate coefficients of A(z), B(z), and P (z), it suffices to estimate G,

since Gi =

[

Ai −Bi

0 Pi

]

.
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We estimate GT by Θk given by the SA algorithm with expanding truncations as

follows. Let Mk = k
1
2−δ with any δ ∈ (0, 1

2 ). Recursively define

Γk =(1 − 1

k
)Γk−1 +

1

k
φk−1ψ

T
k−λ−1(28)

Wk =(1 − 1

k
)Wk−1 +

1

k
zkψ

T
k−λ−1(29)

Θk =(Θk−1 −
1

k
Γk(ΓT

k Θk−1 +WT
k ))I[(Θk−1−

1
k
Γk(ΓT

k
Θk−1+W T

k
))≤Mσk

](30)

σk =

k−1∑

i=1

I[(Θi−1−
1
i
Γi(ΓT

i Θi−1+W T
i ))>Mσi

](31)

with arbitrary initial values Γ0,W0,Θ0, and σ0 = 0.

Theorem 1. Assume B1-B3 hold. Then {ΘT
k } given by (30) converges to a

matrix belonging to J given by (27), the solution set of the Yule-Walker equation (26)

a.s. as k → ∞.

Proof. We only outline the key points, for the detailed proof we refer to [11] .

First of all, (28) and (29) present the time averages of φk−1ψ
T
k−λ−1 and zkψ

T
k−λ−1,

respectively. By ergodicity we have

Γk −−−−→
k→∞

Γ, and Wk −−−−→
k→∞

W,(32)

where Γ and W are given by (23) and (24), respectively.

Comparing (30) with (2) we find that x∗ and yk+1 in (2) correspond to 0 and

−Γk(ΓT
k Θk−1+W

T
k ), respectively. Therefore, the function under consideration f(Θ)

△
=

−ΓΓT Θ + ΓWT is linear, and

yk
△
= −Γk(ΓT

k Θk−1 +WT
k ) = −(ΓΓT Θk−1 + ΓWT ) + ǫk,(33)

where

ǫk = −(ΓkΓT
k Θk−1 + ΓkW

T
k ) + (ΓΓT Θk−1 + ΓWT ).(34)

Thus, the conclusion of the theorem follows from GCT for Linear Functions given in

Section 2 if it can be shown that
∞∑

k=1

1

k
[−(ΓkΓT

k Θk−1 + ΓkW
T
k ) + (ΓΓT Θk−1 + ΓWT )] <∞.(35)

Introducing

F
△
=
















−G1 I 0 · · · 0 0
...

. . .
...

...
. . . 0 0

I 0

−Gλ 0 · · · 0 I

0 0 0
















, L
△
=










S0

...

...

Sλ










,
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we express zk given by (18) in the state space form

zk = Hπk, πk = Fπk−1 + L∆k, H = [

(λ+1)(n+m)
︷ ︸︸ ︷

I, 0, · · · , 0]}(n+m).

By stability of F and B3 it can be shown that

‖ 1

n

n∑

k=0

πk+j+1π
T
k+1 −

∞∑

i=0

F i+jLR∆L
TFTi‖ = O(n−( 1

2−β)) for any β > 0.(36)

Since zk = Hπk, from (36) it follows that

‖ 1

n

n∑

k=1

zk+jz
T
k −Rj‖ = O(n−( 1

2−β))

with Rj = H

∞∑

i=0

F i+jLR∆L
TFTiHT for any β > 0.(37)

As pointed out in Remark 3 by (30) ‖Θk‖ ≤Mσk
≤Mk−1 < k

1
2−δ, which incorporat-

ing with (37) yields

∞∑

k=1

1

k
(ΓkΓT

k − ΓΓT )Θk−1 <∞,

which in turn implies (35).

By Theorem 1 Θk given by (30) is a strongly consistent estimate for GT whenever

ΓΓT is nondegenerate. We now give conditions guaranteeing the required nondegen-

eracy.

B4. detAλ 6= 0, detPλ 6= 0.

B5. detΨ(z)detΦ(z) is coprime with detA(z)detP (z), where

Ψ(z)
△
= (P (z)Rη +Q(z)Rǫη)zλPT (z−1) + (Q(z)Rǫ + P (z)Rηǫ)z

λQT (z−1)(38)

Φ(z)
△
= A(z)Rξz

λAT (z−1) +B(z)Rηz
λBT (z−1)

−B(z)Rηξz
λAT (z−1) −A(z)Rξηz

λBT (z−1)

− [(A(z)Rξη −B(z)Rη)zλPT (z−1) + (A(z)Rξǫ −B(z)Rηǫ)z
λQT (z−1)]

· [(P (z)Rη +Q(z)Rǫη)z
λPT (z−1) + (Q(z)Rǫ + P (z)Rηǫ)z

λQT (z−1)]−1

· [(P (z)Rηξ +Q(z)Rǫξ)z
λAT (z−1) − (P (z)Rη +Q(z)Rǫη)zλBT (z−1)].(39)

Theorem 2. Assume B1-B5 hold and R∆ > 0. Then Γ is of row-full-rank, and

Θk given by (30) converges to GT a.s.

Proof. Denote by ζk the (n+m)−dimensional process S(z)∆k, i.e.,

ζk = S(z)∆k.(40)
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By using the innovation representation [3] it can be shown that ζk can be represented

as

ζk = D(z)wk, D(z)
△
= I +D1z + · · · +Dλz

λ(41)

with Ewk = 0, Ewkw
T
k

△
= Rw > 0 ∀k ≥ 0, Ewkw

T
s = 0 if k 6= s, where D(z) is

a stable (n+m) × (n+m)−matrix polynomial. Then, we have

G(z)zk = D(z)wk.(42)

By [37] the rank of Γ is λ(n + m) if and only if G(z) and D(z) have no common

left-factor and rank[Gλ

...Dλ] = n+m. The latter is guaranteed by B4.

Noticing that

D(z)RwD
T (z−1) = S(z)R∆S

T (z−1), detG(z) = detA(z)P (z),

detS(z)R∆z
λST (z−1) = detΨ(z)detΦ(z),

by B5 we find G(z) and D(z) have no common left-factor, and hence Γ is of row-full-

rank. This proves the theorem, for details we refer to [11].

4. Hammerstein Systems. We now consider identification of the SISO Ham-

merstein system, which consists of a static nonlinearity f(·) followed by an ARMA

type linear subsystem. Here we restricted to the MA type linear subsystem. The

Hammerstein system and the Wiener system to be discussed in the next section are

important in practice, and their identification issue has attracted much attention from

both researchers and practitioners, e.g., [4, 5, 19-23, 38, 39] among others. The block

diagram of Hammerstein system is presented in Figure 1.

- Nonlinearity f(·) - Linearity (MA) - -

?

m
uk vk yk zk

ǫk

Fig. 1. Hammerstein system.

The system input, output, and observation are respectively denoted by uk, yk,

and zk :

yk+1 =

r∑

j=0

djvk−j , d0 = 1, vj = f(uj)(43)

zk = yk + ǫk,(44)
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where ǫk is the observation noise.

The coefficients di, i = 1, · · · , r of the linear subsystem and the function f(·) are

unknown and to be estimated. Since f(·) is not parameterized, we intend to estimate

f(u) at any given u.

Reference [20] probably is the first attempt to identify Hammerstein systems by

SA method, but the obtained there estimates still contain some unknown parameters

and thus the system cannot be identified completely. We now apply the SA algorithm

with expanding truncations to solve the problem.

Fix a u, where f(u) is to be estimated. Let the system input {uk} be a sequence

of bounded independent and identically distributed (iid) random variables |uk| < c1,

∀i = 1, 2, . . ., with Euk = 0 and with density p(·), where c1 > 0 is a constant c1 6= |u|
and p(·) is continuous at u with p(u) > 0. Let {uk} be also independent of the

observation noise {ǫk}. The conditions to be used are as follows.

C1. The nonlinear function f(·) is measurable, locally bounded, and continuous

at u, where f(u) is estimated.

C2. The observation noise {ǫk} is a sequence of mutually independent random

variables with Eǫk −−−−→
k→∞

0 and supk Eǫ
2
k <∞.

To consistently estimate {di} Conditions C1 and C2 are sufficient. It is worth

noting that no assumption is made on the structure of f(·).
In order to uniquely define f(u) and Evk we need a condition to guarantee that

the response of the linear subsystem to a nonzero constant input is nonzero:

C3.
r∑

j=0

dj 6= 0.

Let ak = 1
k and let {Mk} be a sequence of increasing real numbers diverging to

infinity:

Mk > 0, Mk+1 > Mk ∀k, and Mk −−−−→
k→∞

∞.

Define

θk+1(i) =

(
θk(i) − ak(θk(i) − ukzk+1+i), if |θk(i) − ak(θk(i) − ukzk+1+i)| ≤ Mσk(i),

0, otherwise,

(45)

σk(i) =

k−1∑

j=1

I[|θj(i)−aj(θj(i)−ujzj+1+i)|>Mσj(i)],(46)

σ0(i) = 0

with an initial value θ0(i), i = 0, 1, . . . , r, where θk(0) is used to estimate ρ
∆
= Eu1v1,

while θk(i), i = 1, . . . , r are used to estimate ρdi, i = 1, . . . , r, respectively.
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For estimating Ef(u1) and f(u) we define

γk+1 =

{

γk − ak(γk − zk+1), if |γk − ak(γk − zk+1)| ≤Mνk
,

0, otherwise,
(47)

(48) νk =

k−1∑

j=1

I[|γj−aj(γj−zj+1)|>Mνj
], ν0 = 0

with an initial value γ0, and

(49)

µk+1(u) =

(
µk(u) − akwk(µk(u) − zk+1), if |µk(u) − akwk(µk(u) − zk+1)| ≤ Mλk(u),

0, otherwise,

λk(u) =

k−1∑

j=1

I[|µj(u)−ajwj(µj(u)−zj+1)|>Mλj(u)],(50)

λ0(u) = 0

with an initial value µ0(u), where wk is a kernel function

(51) wk
∆
=

1

bk
e
−(

uk−u

bk
)2
,

where bk = 1
kδ with δ ∈ (0, 1

2 ).

Theorem 3. Assume C1 and C2 hold. Then θk(i), i = 0, 1, . . . , r, defined by

(45) (46) are strongly consistent:

(52) θk(0) −−−−→
k→∞

ρ
∆
= E(u1f(u1))(= Eu1v1) a.s.

and

(53) θk(i) −−−−→
k→∞

ρdi a.s., i = 1, . . . , r.

Further, if in addition, C3 holds and ρ 6= 0, then

(54) θk(0)γk

( r∑

i=0

θk(i)
)−1

−−−−→
k→∞

Ef(u1)(= Ev1) a.s.,

(55) µk(u) −−−−→
k→∞

µ(u)
∆
= f(u) +

r∑

j=1

djEf(u1) a.s.,

and

(56) µk(u) −

r∑

j=1

θk(j)γk

r∑

j=0

θk(j)
−−−−→
k→∞

f(u) a.s.,
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where θk(i), γk, and µk(u) are defined by (45)(46), (47)(48), and (49)(50), respec-

tively.

Proof. We outline the key points of the proof.

Rewrite (45) as follows:

(57) θk+1(i) =







θk(i) − ak(θk(i) − diρ) − akǫk+1(i),

if |θk(i) − ak(θk(i) − diρ) − akǫk+1(i)| ≤Mσk
(i),

0, otherwise,

where

(58) ǫk+1(i) = −ukzk+1+i + diρ, i = 0, 1, . . . , r.

The algorithm (57) is for the linear function −x+ diρ, which corresponds to −Fx+ b

in GCT for Linear Functions with F = 1 and b = diρ. Consequently, V = 0 and A5

is automatically satisfied. The root set J in the present case consists of a singleton

diρ. Therefore, by GCT for Linear Functions, for (53) it suffices to verify A4 for

ǫk(i), i = 0, · · · , r given by (58). This can be done by using the convergence theorem

for martingale difference sequences.

Next, rewrite (47) (48) as

(59) γk+1 =







γk − ak(γk −
r∑

j=0

djEf(u1)) + akδk+1,

if |γk − ak(γk −
r∑

j=0

djEf(u1) − δk+1)| ≤Mνk
,

0, otherwise,

where

(60) δk+1 = zk+1 −
r∑

j=0

djEf(u1).

Again, by verifying that A4 holds with ǫk+1 replaced by δk+1, we apply GCT for

Linear Functions to (59)(60) and conclude (54).

Finally, for (55) we rewrite (49) as

(61)

µk+1(u) =







µk(u) − ak
√
πp(u)(µk(u) − f(u) −

r∑

j=1

djEf(u1)) − akek+1(u)),

if |µk(u) − ak
√
πp(u)(µk(u) − f(u) −

r∑

j=1

djEf(u1) − akek+1(u))|

≤Mλk(u),

0, otherwise,
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where

ek+1(u) = wk(µk(u) − zk+1) −
√
πp(u)(µk(u) − f(u) −

r∑

j=1

djEf(u1)).(62)

It is clear that the algorithm (61) is for the linear function

(63)
√
πp(u)(x− f(u) −

r∑

j=1

djEf(u1))

Similar to the argument given above for (55) it suffices to verify A4 for ek+1(u), then

the conclusion follows from GCT for Linear Functions.

However, it is worth noting that A4 may be verified for ǫk+1(i) and δk+1 along

the whole sequence of subscripts k, while the direct verification of A4 for ek+1(u) is

feasible only along subscripts nk for which xnk
converges. This is because only along

convergent subsequences it can be shown that for all large enough k and sufficiently

small T > 0

(64) µs+1(u) = µs(u) − asws(µs(u) − zs+1),

and

‖µs+1(u) − µnk
(u)‖ ≤ cT, s = nk, nk + 1, . . . ,m(nk, T ),(65)

where c is a constant independent of k but may depend on sample path ω. For verifying

A4 with ǫk replaced by ek(u) it is important to have (64)(65), which, roughly speaking,

mean that for s not far from nk µs(u) is close to µnk
(u) and the algorithm suffers

from no truncation. For details we refer to [10].

Remark 6. The linear subsystem is not necessarily restricted to be an MA

process. The results may be extended to ARMA systems.

5. Wiener Systems. We now consider identification of the SISO Wiener sys-

tem, which is also a linear system cascaded with a static nonlinearity similar to the

Hammerstein system but in the reverse order. The block diagram of Wiener systems

is presented in Figure 2.

As in Section 4 the input, output, and observation are respectively denoted by

uk, yk, and zk :

zk = yk + ǫk, yk = f(vk),(66)

vk+1 =
r∑

j=0

djuk−j , d0 = 1.(67)
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The problem is to recursively estimate the coefficients di, i = 1, . . . , r of the linear

subsystem and the value f(v) at any v on the basis of the observations {zk} and

appropriately designed inputs {uk}.
We now define the system input {uk}. Let {ηk} be a sequence of iid Gaussian

random variables ηk ∈ N (0, 1) independent of the observation noise {ǫk}. Define

functions Tk(·):

Tk(x) =







x, x ∈ S(k)
△
= (−kδ, kδ),

kδsign(x), x ∈ Sc(k).
(68)

- Linearity (MA) -Nonlinearity f(·) - -

?

m
uk vk yk zk

ǫk

Fig. 2. Wiener system

It is clear that |Tk(x)| ≤ kδ and the range of Tk(x) unboundedly increases as

k → ∞.

Define the system input uk as

uk = Tk(ηk).(69)

Let us define sequences of real numbers to be used in the algorithms:

ak =
1

k
, bk =

1

kα
, Mk = M0 + kβ , k = 1, . . . ,(70)

where α > 0, β > 0 M0 > 0, 3α+ β + δ < 1/2, where δ > 0 is the one given in (68).

For estimating the linear subsystem as in Section 4 we apply the SA algorithms

with expanding truncations:

θk+1(i) = [θk(i) − ak(θk(i) − ukzk+i+1)]I[|θk(i)−ak(θk(i)−ukzk+i+1)|≤Mσk(i)],(71)

σk(i) =
k−1∑

j=1

I[|θj(i)−aj(θj(i)−ujzj+i+1)|>Mσj(i)], σ0(i) = 0,(72)

with any initial values θ0(i), i = 0, 1, . . . , r.

Set

σ
△
=

(
r∑

i=0

d2
i

)1/2

and ρ
△
=

1√
2πσ3

∫

R

tf(t)e−
t2

2σ2 dt.(73)
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Note that θk(0) is used for estimating ρ, and θk(i)
θk(0) for di, i = 1, . . . , q, wherever ρ 6= 0.

Denote by dik the k-th estimate for di. Then the output vk and its standard

deviation of the linear subsystem are respectively estimated by

v̂k
△
= uk−1 + d1kuk−2 + · · · + drkuk−r−1, σ̂k

△
=

(
r∑

i=0

d2
ik

)1/2

.(74)

In order to estimate f(v) we introduce the following kernel function

wk
△
=

√
2πσ

bk
e
−
�

vk−v

bk

�2
+

v2
k

2σ2 .(75)

By (74), wk is naturally estimated by

ŵk
△
=

√
2πσ̂k

bk
e
−
�

v̂k−v

bk

�2
+

v̂2
k

2σ̂2
k .(76)

With any initial value µ0(v), f(v) is estimated by µk(v), which is recursively calculated

according to the following SA algorithm with expanding truncations:

µk+1(v) = [µk(v) − akŵk(µk(v) − zk)]I[|µk(v)−akŵk(µk(v)−zk)|≤Mνk(v)],(77)

νk(v) =

k−1∑

j=1

I[|µj(v)−ajŵj(µj(v)−yj)|>Mνj(v)], ν0(v) = 0.(78)

Let us list conditions to be used.

D1. The static nonlinearity f(·) is a bounded measurable function and continuous

at v, where f(v) is estimated.

D2. The observation noise {ǫk} is a sequence of mutually independent random

variables with Eǫk = 0 and supk Eǫ
2
k <∞, and is independent of {ηk}.

Theorem 4. Assume D1 and D2 hold. Then

θk(0) −−−−→
k→∞

ρ, θk(i) −−−−→
k→∞

ρdi a.s. i = 1, . . . , r.(79)

Further, if, in addition, ρ 6= 0, then

µk(v) −−−−→
k→∞

f(v) a.s.(80)

Proof. We outline the key points of the proof. For estimating the linear subsystem

(71) is rewritten as

θk+1(i) =







θk(i) − ak(θk(i) − ρdi) − ak ǭk+1(i),

if |θk(i) − ak(θk(i) − ρdi) − ak ǭk+1(i)| ≤Mσk
(i),

0, otherwise,

(81)
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where

ǭk+1(i) = −ukzk+i+1 + ρdi, i = 0, 1, . . . , r.(82)

By verifying A4 satisfied by ǭk+1(i), (79) follows from GCT for Linear Functions.

Further, rewrite (77) as

µk+1(v) =







µk(v) − ak
√
π(µk(v) − f(v)) + akek(v),

if |µk(v) − ak
√
π(µk(v) − f(v)) + akek(v)| ≤Mνk(v),

0, otherwise,

(83)

where

ek(v) =
√
π(µk(v) − f(v)) − ŵk(µk(v) − zk).(84)

Noticing that f(v) is the root of
√
π(x− f(v)), by GCT for Linear Functions, for (80)

it suffices to verify A4 for ek(v). It is important to note that A4 is verifiable along

subscripts nk of any convergent subsequences, but not along the whole sequence of

subscripts k. For details we refer to [23].

Remark 7. Theorem 4 can be extended to the case where the linear subsystem

is an ARMA process and f(·) is unbounded but with some growth rate restriction.

6. Concluding Remarks. The SA algorithms with expanding truncations in-

corporating with TS method was successfully applied to solving a set of problems

arising from systems and control. This paper demonstrates that the method is also

a powerful tool for system identification. By this method the recursive and strongly

consistent estimates are given for multivariate EIV systems, Hammerstein systems

and Wiener systems with non-parameterized nonlinearity f(·). By the way, the Ham-

merstein and Wiener systems with f(·) being a piece-wise linear function have also

been recursively identified recently by the author with co-authors giving the strongly

consistent estimates for all unknown system parameters.

A set of examples have been computed according to the algorithms given in the

paper for various systems, and the numerical simulation results are consistent with

theoretical analysis. The general picture is that some fluctuations appear at the first

steps and then estimates approach to the true values.

For further research it is of interest to consider more general inputs uk, more

complicated nonlinearities, and possibly the adaptive control problems.
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