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REGULARITY OF RENORMALIZED SELF-INTERSECTION LOCAL
TIME FOR FRACTIONAL BROWNIAN MOTION*

YAOZHONG HU' AND DAVID NUALARTT

Abstract. Let B be a d-dimensional fractional Brownian motion with Hurst parameter H €
(0,1). We study the regularity, in the sense of the Malliavin calculus, of the renormalized self-

intersection local time

T t T t
z:/ / 60(BfI—Bf)dsdt—E(/ / 60(BfI—Bf)dsdt) ,
Jo Jo JOo JO

where dg is the Dirac delta function.

1. Introduction. The fractional Brownian motion on R% with Hurst parameter
H € (0,1) is a d-dimensional Gaussian process Bf = {B} t > 0} with mean zero
and covariance function given by
HipHjy _ % o0 | 20 |, 2H
E(BMBI) = S (21 4 52— |g — sH),
where 7,5 = 1,...,d, and s,t > 0. We will assume that d > 2. The self-intersection
local time of BY is formally defined by

T t
(1) I:/ / So(BHf — BM)dsat,
0 0

where dg(z) is the Dirac delta function. Using the heat kernel

2
|z

pe(x) = (Zﬁa)fd/zef %,

we approximate the self-intersection local time of B¥ by

T t
(2) I = / / p=(BF — BH)dsdt.
0 0

The asymptotic behavior of I, as e tends to zero is studied in [5], and the following
results are proved.
i) f H< %, then I. converges in L? as ¢ tends to zero.

i) If 2 < H < 2, then

-

_d
IE —TCH7dE 2t2 s

converges in L? as € tends to zero to a limit ¢, where

1 [e%s} _d
CH,a= = / (Zﬁ—l-l) zdz.
(2m)z Jo
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iii) If & = 2. then
T
I — 710g1
2H (27)%

converges in L? as ¢ tends to zero.

3 < H < § then the random variables

iv) If

(I. —E(L.)) if H=%

[N

(log%)
es—an (I, —E(L.)) if H>Z

converge as € tends to zero in distribution to a normal law N(0,To?), where
o? is a constant depending on d and H.

We denote by ¢ the limit introduced in ii) and iii). It turns out that ¢ is also
equal to the limit in L? of I. — E(I.) as ¢ tends to zero. If H < 1, then ¢ will be
defined as the limit in L? of I. — E(I.) as e tends to zero. The random variable
¢ is called the renormalized self-intersection local time of the fractional Brownian
motion.

In this paper we shall study the regularity, in the sense of Malliavin calculus, of

the renormalized self-intersection local time ¢, assuming H < 5. We prove that, for

3 (Ot/\l))
2d’ d+2a

This result generalizes that obtained by Hu in [4] in the case « = 1. The proof of

any real a > 0, £ belongs to the Sobolev space D2, prov1ded H < min(

this result is established via chaos expansions.
In Section 2, we recall the chaos expansion of self-intersection local time obtained

in [5]. In Section 3, we state and prove the main result of the paper.

2. Wiener chaos expansion of the self-intersection local time. In this
section we recall the Wiener chaos expansion of the renormalized self-intersection local
time ¢ obtained in [5].

Let H be the Hilbert space defined as the closure of set £ of step functions from
R, to R? with respect to the scalar product

d
1
((Lota)s > Lo,0a)) » (Lossa]s - -+ Ljo,5a]) Day = od H (7 + 2 — |t — s 7).

Then, the mapping 1}, — BE is a linear isometry between H and the Gaussian
space spanned by B¥. For any n > 1 we denote by I,, the multiple stochastic integral
which provides an isometry between the symmetric tensor product (H)®" equipped
with the norm v/n!|||;o. and the nth Wiener chaos of B*.

Given a multi-index i, = (i1,...,1,), 1 <i; < d, we set

a(in) = ]E [le T 'Xin] ’
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where the X; are independent N (0, 1) random variables. Notice that

(2mq)! -+ (2mg)!
(ma)!- - (mg)12m’

Oé(igm> =

if n = 2m is even and for each k = 1,...,d, the number of components of i3, equal
to k, denoted by 2my, is also even, and «(i,) = 0, otherwise.

PROPOSITION 1. Assume Hd < % Then, we have

0= Lm(fam),
m=1

where fam is the element of (H)®*™ given by

(27) "% aliom)
(2m)!

T t 2m
3) « / / dsdtlt — 5| 7420 T 1504 (ry).
o Jo ey

Let us introduce the following notation.

f2m(i2murlu .. '7T2m) =

(4) A=|t—s* p=t' =1,
and
1
) (N

. . . H,1 : : H1 H]1

Notice that A is the variance of B, — Bl p is the variance of B;;"" — B,,"", and
. . H,1 H,11 H]1

w is the covariance between B, — Bl and B,;"" — B, where Bf>! denotes a

one-dimensional fractional Brownian motion with Hurst parameter H.

The L?-norm of the 2mth Wiener chaos of ¢ can be computed as follows.

E | (Tom (fam))?] = 2m)! || fom 3 goam

_ emp ot

mi+-Fmg=m

—d_ .y 4, 2m ! 34l

></ A2 T2 T ™ dsdtds'dt
T

Qi _d

(6) = WL ()\p) 2™ ‘LLdeSdtdS/dt/,

where

o= > (2m1)!- - (2my)!

2 2
mi—+-+mg=m (mll) et (md')
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and
T={(s,t,s',t):0<s<t<T 0<s <t <T}.

The following lemma will be useful later.

LEMMA 2. For any z € [0,1) we have

= (@em)! 1

(mh222n* T T

Proof. This is a well-known result that can be checked, for instance, by noticing
that

m=0

m) 222m

i : (2)m)! o — JBrE (ez(Y/2)2)7

m=0

where Y is a standard normal random variable. 0

3. Regularity of the renormalized self-intersection local time. For any
a > 0, we denote by D2 the class of “smooth” functionals of the fractional Brownian
motion, in the sense of Meyer-Watanabe. That is,
D*? ={F e L*: ) (n+1)*E((Jn (F))*) < oo},
n=0
where J,,(F) is the n-th chaos of F, namely, F =Y > J,,(F).
The following theorem is the main result of this paper.

THEOREM 3. Fiz o > 0. Assume that H < min(z;, 2512;))

. Then the renormal-
ized self-intersection local time € belongs to D2,

REMARK 4. If o = 1, we recover the result by Hu [4].

The theorem is the direct consequence of the following two lemmas which are
themselves interesting.

LEMMA 5. a) The renormalized self-intersection local time £ belongs to DN:2,

where N > 1, is an integer, if and only if
/ 12N 52 Nisdtds'dt < oo.
T

b) The renormalized self-intersection local time £ belongs to DVNTP2 where N > 0, is

an integer, and 0 < 3 < 1, if for some 1 > (' > f3
(7) / 2N s8N0 gsdtds’ dt’ < oo.
T

Proof. From (6) we obtain that, for all & > 0, a necessary and sufficient condition

for £ to be in D*2 is

> Mm%, ™ /o
8 = / dsdtds'dt” < oo,
) mzzjl 22mJr (Ap)?
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where

12

7:/\_;)'

Using Lemma 2 we deduce the following formula for all z € [0, 1)

(9) Z—’; =(1-2)"%.

Suppose first that « = N is an integer. In this case, differentiating both sides of
(9) N times with respect to z yields

$ 58 1) N4 = 01—,
where C = 4 (4 +1)---(§+ N —1). Hence,
m(m—1)---(m—N+1)2" = CzN(1 —2)75 N,

and we get that (8) is equivalent to

a_
2

N 1— —
/ %dsdtds’dt’ = / 12N 675N dsdtds'dt! < oo,
T (Ap)2 T
where
§=\p— 2.

This proves part a) of the lemma.
Suppose now that k = N + 3, with 0 < 8 < 1, and N > 0. Multiplying both
members of Equation (9) by (y — z)™” and integrating in the variable z from 0 to ¥,

we obtain
oo y "
> Sr gy = [0t
oo 0

Hence,

> = [ -t

Differentiating this identity N + 1 times with respect to z yields

I'(1-pB)I'(m) ,m—N-1
ra—-pg+m)

3 ;—Zm( m—1)--(m—N —2)

m=N+1

1
= C/ (1= zt)" 2" N-1N+1(1 —)=Bgy,
0
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where C' = % (% +1) - (% + N). Hence, (8) is equivalent to
1
(10) / (Ap)~ 24N H (/ (1 —yy) 8Nl N+1(g — y)_ﬁdy> dsdtds'dt’ < oo.
T 0

We claim that for all 5’ > 3,

’

1
/ (L= ) P(L— ) 3Ny < k(1 —7) $ N0
0

In fact, (1 —yy) 2 V"1 < (1—y)% 11 —~)"2=N=F Thus,

1 1
/ (1—y) (1 —yy) 2Ny < (1 — )~ 5 N0 / (1—y) P tay
0 0

Hence, (10) holds if
/ (Ap) " 2ANTH (1 — )2 N dsdtds’ dt’
T

:/ () 2NN 55 =N=F gsqtds’dt’ < oo,
T

and (7) holds because p? < Ap. O
LEMMA 6. Fiz a positive real number o > 0. Suppose that H < min ( 23—d, %) .
Then

/ (2452 dsdtds' dt’ < oc.
T
Proof. Denote

(11) Tn{s<s'}=T UnLUT;,

T ={(t,st,s):0<s<s <t<t <T},
To={(tst,s):0<s<s <t <t<T},
T3 ={(t,s,t',s"):0<s<t<s <t <T}
We will make use of the notation:
i) If (t,s,t',8") € Ty, weput a = s’ —s, b=t — s and ¢ =t — t. On this region, the
functions A, p and p defined in (4) and (5) take the following values
(12) A= X1 :=M(a,b,¢):=(a+ ) p=p:=(b+c)",

1
(13)  p=p1:=pi(a,b,c):= 3 [(a—|—b—|— c)?H 4 _ 2H aQH} .
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ii) If (¢,s,t',8) € Ta, weput a=8 —s, b=t — s’ and ¢ = ¢ — ¢. On this region we

will have
(14) A=y =0 p=py:i=(a+b+c),
1
(15) p=pn =g [(b+ )" + (a+b)* — 2 — M.

iii) If (¢,s,t',8') € T3, weput a=t—s, b= —t and ¢ =t — s'. On this region we
will have

(16) A=X3:=a*f p=ps:=c

)

[(a+b+c)* + 027 — (b+¢)* — (a+b)*1].
For i =1,2,3 we set
8 = Nipi — p; -

Note that A;, p;, p; and so on, ¢ = 1,2, 3, are functions of a, b, and c.

In the sequel we will denote by k a generic constant that may depend on H and

The following lower bounds were obtained by Hu in [4] using the local nondeter-

minism property of the fractional Brownian motion (see Berman [2]).

(18) &1 > k[(a+0)2 " + (b+ ¢)*a?],
(19) 61' Z k)\ipiu 1= 2, 3.

Using the above decomposition of the region 7, it suffices to show that A; < oo,
for i = 1,2, 3, where

A= / 12V 67N adbde.,
j0.17°

Then the proof of the lemma will de done in three steps:

Step 1. We claim that

Ay < oo.

We have

1
=3 ((a+b+c)2H+b2H—a2H—czH)

1
=3 ((a® +b* + & + 2ab + 2ac + 2be) " + v*H — o> — M)

<O 2 HpI o =1 H M g o =1pH
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The, using (18) yields
p2e <k (bRoH 4 (q20Hp20H y g20H 20H | j2aH 20H))
< 3k (b**7 4+ 6%).
As a consequence,
(20) PR < (7% et ).
Using again (18) we obtain
[(a+b)7(b+c)TacH] ~
(abe) 5™,
where —2Hd > —1.

In order to treat the second term of (20) we consider two different cases. Assume
first that d < 6« .Then

_d_q
b2aH61*%*0‘ < [(a+b)2H02H+ (b+c)2Ha2H] 57 pdaH

k

_d_qu
k [(bC)2H 4 (ba)2H} 2 b4aH
k

(ac) " H(5+e) pHa—a),

IN

IN

2 1
d+2a — d—2o°

and both exponents are larger than —1, because H <

For d > 6, we make use of the estimate

_d_gq
[(a + b)HCH(b + C)HCLH] 2 b4aH
(ac)*(51+1)(%+a)H phaH —Ba(d+20) H

PRI <
k

IN

where 31, B2 > 0, and §; + B2 = 1. Taking

d — 6a 3y = 2d + 12«
(d+2a)" " 3(d+2a)

br=3

we obtain

2dH
3

BROH 2T < g (abe) ™
Step 2. We claim that
Ay < 00.

If H > % we have

pe == ((b+ )" + (a+b)* — o — 2H)

N =

1
= Hb/ [(a@+bu) =1 + (c+bu)* ] du
0

< kbla+b+c)* L
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Therefore, using (19)

ugaagg—a < be(d+2a)+2a(a+b+C)H(2a7d)72a.

Using the inequality a + b+ ¢ > CaPcPb' =28, with g = M%’ we obtain

__2dH

2o¢5_%_0‘ <k 3
Ha 0y < k (abc)

Notice that 8 € (0, %], because H < %.

Suppose now that H < % In this case we have

1o < kb (aﬁ(2H—1)b(l—B)(2H—1) I CB(2H—1)b(1—ﬁ)(2H—1)) :

for all 8 € [0,1]. Hence,
_d_g B B B _d_q
uga52 5 < kP (2H—1)20p(1-p)(2H 1)20¢+2a52 o)
_'_kCB(QHfl)Qab(lfﬁ)(2H71)2a+2a52_%_a
= Il + IQ.
By symmetry it suffices to treat the term I;. We have

I} < kaPCH-D20p2(1-2)al+205—dH (4 j | o~dH-20H
Now we make use of the lower bound
(a+b+c)" > kab2en,
where v1 + v2 +v3 = 1, and 71, 72, 73 > 0. In this way we obtain
I < ka2,
where

p1=B(2H —1)2a — 1 H(d + 2a)
B =2(1 —20)aH + 208 — dH — v H(d + 2a)
B3 = —y3H(d + 2a).

29

If d < 6a, we choose 5 =0,7, =3 = %, and 2 = 0, and we obtain the exponents

pr =P = —L(d; 20)

ﬁgZH(2Oé—d)>—1.

> —1

If d > 6, we choose

H(d - 6a) d + 6 2d

= = :0 =
P =60 —2ma "~ 3d+20) 2 " BT 3ar2a)
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and we obtain the exponents

ﬁl—ﬁ2—ﬁ3——¥>—l.

Step 3.- We claim that
A3 < o0.

In this case, (17) and the inequality

b+ ve + ua > k(veua)b' =28,
with 8 € [0, 1], yield

s < k(ac)1+6(2H—2) p(1-20)(2H=2)

provided 3 < 5 5= H) As a consequence,

Mga(g;%—a <k (ac)[1+ﬁ(2H*2)]2adef2Ha p(1—26)(2H~2)20r

Choosing = 8az6Ha—Hd ' e ohtain

2a(1-H)
200 _%_0‘ *#
303 <k (ac)
Notice that 8 > 0 because H < 2a+d < 6a+d, and also 8 < 5 5= H) O
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