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A SURVEY OF SOME SIMULATION-BASED ALGORITHMS FOR

MARKOV DECISION PROCESSES

HYEONG SOO CHANG∗, MICHAEL C. FU† , JIAQIAO HU‡ , AND STEVEN I. MARCUS§

Abstract. Many problems modeled by Markov decision processes (MDPs) have very large state

and/or action spaces, leading to the well-known curse of dimensionality that makes solution of the

resulting models intractable. In other cases, the system of interest is complex enough that it is not

feasible to explicitly specify some of the MDP model parameters, but simulated sample paths can be

readily generated (e.g., for random state transitions and rewards), albeit at a non-trivial computa-

tional cost. For these settings, we have developed various sampling and population-based numerical

algorithms to overcome the computational difficulties of computing an optimal solution in terms

of a policy and/or value function. Specific approaches presented in this survey include multi-stage

adaptive sampling, evolutionary policy iteration and evolutionary random policy search.

Key words: (adaptive) sampling, Markov decision process, population-based algorithms

1. Introduction. Markov decision process (MDP) models are widely used for

modeling sequential decision-making problems that arise in engineering, economics,

computer science, and the social sciences. However, it is well-known that many real-

world problems modeled by MDPs have very large state and/or action spaces, leading

to the well-known curse of dimensionality that makes practical solution of the re-

sulting models intractable. In other cases, the system of interest is complex enough

that it is not feasible to explicitly specify some of the MDP model parameters, but

simulated sample paths can be readily generated (e.g., for random state transitions

and rewards), albeit at a non-trivial computational cost. For these settings, we have

developed various sampling and population-based numerical algorithms to overcome

the computational difficulties of computing an optimal solution in terms of a policy

and/or value function. Specific approaches include multi-stage adaptive sampling,

evolutionary policy iteration and evolutionary random policy search. This paper

brings together these algorithms and presents them in a unified manner. These ap-

proaches are distinct from but complementary to those computational approaches

for solving MDPs based on explicit state-space reduction, such as neuro-dynamic

programming or reinforcement learning; in fact, the computational gains achieved
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through approximations and parameterizations to reduce the size of the state space

can be incorporated into our proposed algorithms.

We begin with a formal description of the general discounted cost MDP framework

in Section 2, including both the finite and infinite horizon settings and summarizing

the associated optimality equations. We then present the well-known exact solution

algorithms, value iteration and policy iteration. We conclude with a brief survey

of other recently proposed MDP solution techniques designed to break the curse of

dimensionality.

In Section 3, we present simulation-based algorithms for estimating the optimal

value function in finite horizon MDPs with large (possibly uncountable) state spaces,

where the usual techniques of policy iteration and value iteration are either compu-

tationally impractical or infeasible to implement. We present two adaptive sampling

algorithms that estimate the optimal value function by choosing actions to sample

in each state visited on a finite horizon simulated sample path. The first approach

builds upon the expected regret analysis of multi-armed bandit models and uses up-

per confidence bounds to determine which action to sample next, whereas the second

approach uses ideas from learning automata to determine the next sampled action.

Section 4 considers infinite horizon problems and presents non-simulation-based

approaches for finding an optimal policy. The algorithms in this chapter work with

a population of policies — in contrast to the usual policy iteration approach, which

updates a single policy — and are targeted at problems with large action spaces (again

possibly uncountable) and relatively small state spaces (which could be reduced, for

instance, through approximate dynamic programming techniques). The algorithms

assume that the distributions on state transitions and rewards are known explicitly.

Extension to the setting when this is not the case is discussed, where finite-horizon

simulated sample paths would be used to estimate the value functions for each policy

in the population.

For a more complete discussion of the methods presented in this paper, including

convergence proofs and numerical results, the reader is referred to the book [11].

2. Markov Decision Processes and Previous Work. Define a Markov de-

cision process (MDP) by the five-tuple (X, A, A(·), P, R), where X denotes the state

space, A the action space, A(x) ⊆ A denotes the set of admissible actions in state x,

P (x, a)(y) is the probability of transitioning from state x ∈ X to state y ∈ X when

action a ∈ A(x) is taken, and R(x, a) is the non-negative bounded (by Rmax ∈ ℜ+)

reward obtained when in state x ∈ X and action a ∈ A(x) is taken. More generally,

R(x, a) may itself be a random variable, or viewed as the (conditioned on x and a)

expectation of an underlying random cost. For simplicity, we will usually assume that

X is a countable set, but the discussion and notation can be generalized to uncount-
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able state spaces. We have assumed that the components of the model are stationary

(not explicitly time-dependent); the nonstationary case can easily be incorporated

into this model by augmenting the state with a time variable.

The evolution of the system is as follows. Let xt denote the state at time (stage

or period) t ∈ {0, 1, ...} and at the action chosen at that time. If xt = x ∈ X and

at = a ∈ A(x), then the system transitions from state x to state xt+1 = y ∈ X with

probability P (x, a)(y), and a reward of R(x, a) is obtained. Once the transition to

the next state has occurred, a new action is chosen, and the process is repeated.

Let Π be the set of all (possibly nonstationary) Markovian policies π = {πt, t =

0, 1, ...}, where πt(x) ∈ A(x), x ∈ X . The goal is to find a policy π that maximizes

the expected total discounted reward given by

(1) V π(x) = E

[

H−1
∑

t=0

γtR(xt, πt(xt))

∣

∣

∣

∣

∣

x0 = x

]

,

for some given initial state x ∈ X , where 0 < γ ≤ 1 is the discount factor, and H may

be infinite (if γ < 1). The optimal value will be denoted by

(2) V ∗(x) = sup
π∈Π

V π(x), x ∈ X,

and a corresponding optimal policy in Π that achieves V ∗(x) for all x ∈ X will be

denoted by π∗.

Sometimes we will describe an MDP using a simulation model or noise-driven

model, denoted by (X, A, A(·), f, R′), where R′(x, a, w) ≤ Rmax, x ∈ X, a ∈ A(x), w ∈

[0, 1], is the non-negative reward, and f is the next-state transition function such that

the system dynamics are given by

(3) xt+1 = f(xt, at, wt) for t = 0, 1, ..., H − 1,

where xt ∈ X is the state at time t, at ∈ A(x) is the action at time t, and wt is a ran-

dom disturbance uniformly and independently selected from [0,1] at time t, represent-

ing the uncertainty in the system. Note that any simulation model (X, A, A(·), f, R′)

with dynamics (3) can be transformed into a model (X, A, A(·), P, R) with state-

transition function P . Conversely, given a standard MDP model (X, A, A(·), P, R), it

can be represented as a simulation model (X, A, A(·), f, R′) [6]; [14], Sec. 2.3. It will

be assumed that the same random number is associated with the reward and next

state functions in the simulation model.

2.1. Optimality Equations. For the finite-horizon problem (H < ∞), we de-

fine the optimal reward-to-go value for state x ∈ X in stage i by

(4) V ∗
i (x) = sup

π∈Π
V π

i (x),
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where the reward-to-go value for policy π for state x in stage i is defined by

(5) V π
i (x) = E

[

H−1
∑

t=i

γtR(xt, πt(xt))

∣

∣

∣

∣

∣

xi = x

]

,

i = 0, ..., H − 1, with V ∗
H(x) = 0 for all x ∈ X . Note that V π(x) = V π

0 (x) and

V ∗(x) = V ∗
0 (x), and we will refer to V π and V ∗ as the value function for π and

the optimal value function, respectively. It is well known that V ∗
i can be written

recursively as follows: for all x ∈ X and i = 0, ..., H − 1,

V ∗
i (x) = sup

a∈A(x)

Q∗
i (x, a),(6)

Q∗
i (x, a) = R(x, a) + γ

∑

y∈X

P (x, a)(y)V ∗
i+1(y).(7)

The solution of these optimality equations is usually referred to as (stochastic) dy-

namic programming, for which we have

V ∗
0 (x0) = sup

π∈Π
V π

0 (x0).

For an infinite horizon problem (H = ∞), we consider the set Πs ⊆ Π of all

stationary Markovian policies such that Πs = {π|π ∈ Π and πt = πt′ for all t, t′},

since under mild regularity conditions, an optimal policy always exists in Πs for

the infinite horizon problem. In a slight abuse of notation, we use π for the policy

{π, π, . . . , } for the infinite horizon problem, and we define the optimal value associated

with an initial state x ∈ X : V ∗(x) = supπ∈Π V π(x), x ∈ X , where for x ∈ X, 0 < γ <

1, π ∈ Π,

V π(x) = E

[

∞
∑

t=0

γtR(xt, π(xt))

∣

∣

∣

∣

x0 = x

]

,

for which the well-known Bellman’s optimality principle holds as follows: For all

x ∈ X ,

(8) V ∗(x) = sup
a∈A(x)

{

R(x, a) + γ
∑

y∈X

P (x, a)(y)V ∗(y)

}

,

where V ∗(x), x ∈ X , is unique, and there exists a policy π∗ satisfying

(9) π∗(x) ∈ arg sup
a∈A(x)

{

R(x, a) + γ
∑

y∈X

P (x, a)(y)V ∗(y)

}

, x ∈ X,

and V π∗

(x) = V ∗(x) for all x ∈ X .

In order to simplify the notation, we use V ∗ and V π to denote the optimal value

function and value function for policy π, respectively, in both the finite and infinite

horizon settings.
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Define

(10) Q∗(x, a) = R(x, a) + γ
∑

y∈X

P (x, a)(y)V ∗(y), x ∈ X, a ∈ A(x).

Then it immediately follows that supa∈A(x) Q∗(x, a) = V ∗(x), x ∈ X, and that Q∗

satisfies the following fixed-point equation: for x ∈ X and a ∈ A(x),

(11) Q∗(x, a) = R(x, a) + γ
∑

y∈X

P (x, a)(y) sup
a′∈A(y)

Q∗(y, a′).

Our goal for the infinite horizon problem is to find an (approximate) optimal

policy π∗ ∈ Πs that achieves the (approximate) optimal value with an initial state,

where the initial state is distributed with a probability distribution δ defined over X .

For a simulation model (X, A, A(·), f, R′) with dynamics (3), the optimal reward-

to-go value function V ∗
i in stage i over a horizon H is given by

V ∗
i (x) = sup

π∈Π
Ew

[

H−1
∑

t=i

R(xt, πt(xt), wt)

∣

∣

∣

∣

∣

xi = x

]

,

where x ∈ X, w = (wi, wi+1, ..., wH−1), wj ∼ U(0, 1), j = i, ..., H − 1, and xt =

f(xt−1, πt−1(xt−1), wt−1) is a random variable denoting the state at stage t following

policy π. V ∗ is also similarly given for the MDP model, and the Q-function can be

defined analogously:

(12) Q∗
i (x, a) = E[R(x, a, U)] + γE[V ∗

i+1(f(x, a, U))], U ∼ U(0, 1).

2.2. Previous Work on Computational Methods. While an optimal pol-

icy can, in principle, be obtained by the methods of dynamic programming, policy

iteration, and value iteration [4] [25] such computations are often prohibitively time-

consuming. In particular, the size of the state space grows exponentially with the

number of state variables, a phenomenon referred to by Bellman as the curse of di-

mensionality. Similarly, the size of the action space can also lead to computational

intractability. Lastly, the transition function/probabilities (f or P ) and/or random

rewards may not be explicitly known, but a simulation model may be available for

producing sample paths, which means that traditional approaches cannot be applied.

These diverse computational challenges have given rise to a number of approaches

intended to result in more tractable computations for estimating the optimal value

function and finding optimal or good suboptimal policies. Some of these approaches

can be categorized as follows:

1. structural analysis and proof of structural properties,

2. approximating the problem with a simpler problem,

3. approximating the dynamic programming equations or the value function,
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4. algorithms in policy space,

The first approach can be exact, and involves the use of structural properties of

the problem or the solution, such as monotonicity, convexity, modularity, or fac-

tored representations, to facilitate the process of finding an optimal solution or policy

(cf. [21], [28], [12], [13]).

The remaining approaches all involve approximations or suboptimal policies. The

second class of approaches can involve (i) approximation of the model with a simpler

model (e.g., via state aggregation, linearization, or discretization), or (ii) restricting

the structure of the policies (e.g., linear policies, certainty equivalent policies, or

open-loop-feedback control policies [4]. The third approach is to approximate the

value function and/or the dynamic programming equations using techniques such as

state aggregation, basis function representations, and feature extraction [5] [14]. The

fourth class of algorithms work in policy space, as does Policy Iteration, and are

intended to provide more tractable algorithms than PI. The algorithms presented in

this paper use randomization, sampling, or simulation in the context of the third and

fourth approaches listed above.

To put our work in better perspective, we now briefly compare our approaches

with some other important randomized/simulation-based methods. Most of this work

has involved approximate solution of the dynamic programming equations or approx-

imation of value functions, and is referred to as reinforcement learning or neuro-

dynamic programming (NDP) (cf. [5], [29], [31], [27], [22]).

Q-learning, perhaps the most well-known example of reinforcement learning, is

a stochastic-approximation based solution approach to solving (11) [32] [30]. It is a

model-free algorithm that works for the case in which the parameters of P and R are

unknown. In asynchronous Q-learning, a sequence of estimates {Qt(·, ·), t = 0, 1, ..., }

of Q∗ is constructed as follows. The decision maker observes state xt and takes an

action at ∈ A(xt). The action at is chosen according to a randomized policy (a

randomized policy is a generalized type of policy, in which, for an observed state

xt, an action is chosen randomly from a probability distribution over A(xt)). The

decision maker receives the reward R(xt, at), updates Qt(xt, at) by

Qt+1(xt, at)← Qt(xt, at) + αt(xt, at)×
[

R(xt, at) + γ sup
a′∈A(N(xt,at))

Qt(N(xt, at), a
′)−Qt(xt, at)

]

,

where αt(xt, at) is a nonnegative stepsize coefficient, and sets Qt+1(x, a) = Qt(x, a)

for all pairs (x, a) 6= (xt, at). Here, N(xt, at) is a simulated next state that is equal to

y with P (xt, at)(y). The values of R(xt, at) and N(xt, at) are observed by simulation.

It has been shown that under general conditions, the sequence {Qt} converges to

the function Q∗ for finite state and action MDPs [30]. The critical condition for the



A SURVEY OF SOME SIMULATION-BASED ALGORITHMS 65

convergence is that the randomized policy employed by the decision maker needs to

ensure that each state is visited infinitely often and every action is taken (explored) in

every state infinitely often. Only limited results exist for the convergence rate of Q-

learning, and it is well-known that the convergence of stochastic-approximation-based

algorithms for solving MDPs can be quite slow. Furthermore, because straightforward

Q-learning is implemented with a lookup table of size |X | × |A|, it suffers from the

curse of dimensionality.

Another important aspect of the work involves approximating the optimal value

function V ∗ using neural networks and/or simulation. V ∗(x), x ∈ X, is replaced with

a suitable function-approximation Ṽ (x, r), called a “scoring function,” where r is a

vector of parameters, and an approximate optimal policy is obtained by taking an

action in

argmax
a∈A(x)

E
[

R(x, a) + γṼ (N(x, a), r)
]

at state x. The general form of Ṽ is known and is such that the evaluation of Ṽ (x, r) is

simple once the vector r is determined. By the use of scoring functions which involve

few parameters, we can compactly represent a large state space. For example, Ṽ (x, r)

may be the output of some neural network in response to the input x, and r is the

associated vector of weights or parameters of the neural network. Or we can select

features/basis-functions to represent states, and r in this case is the associated vector

of relative weights of the features/basis-functions. Once the architecture of scoring

functions are determined, NDP then needs to “learn” the right parameter vector value

that closely approximates the optimal value. The success of the approach depends

heavily on the choice of a good architecture, which is generally problem dependent.

Furthermore, the quality of the approximation is usually often difficult to gauge in

terms of useful theoretical bounds on the error from optimality.

Up to now, the majority of the solution methods have concentrated on reducing

the size of the state space in order to address the state space “curse of dimensionality.”

The key idea throughout is to avoid enumerating the entire state space. However,

most of the above approaches generally require the ability to search the entire action

space in order to choose the best action at each step of the iteration procedure; thus

problems with very large action spaces may still pose a computational challenge.

The approach proposed in Section 4 is meant to complement these highly successful

techniques. In particular, there we focus on MDPs where the state space is relatively

small but the action space is very large, so that enumerating the entire action space

becomes practically inefficient. From a more general point of view, if one of the

aforementioned state space reduction techniques is considered, for instance, say state

aggregation, then MDPs with small state spaces and large action spaces can also be
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regarded as the outcomes resulting from the aggregation of MDPs with large state

and action spaces.

3. Multi-stage Adaptive Sampling Algorithms. In this section, we present

algorithms intended to accurately and efficiently estimate the optimal value function

under the constraint that there is a finite number of simulation replications to be

allocated per state in stage i. The straightforward approach to this would be simply

to sample each action feasible in a state equally, but this is clearly not an efficient

use of computational resources, so the main question to be decided is which action to

sample next. The algorithms in this section adaptively choose which action to sample

as the sampling process proceeds, based on the estimates obtained up to that point,

and lead to value function estimators that converge to the true value asymptotically

in the total number of samples. These algorithms are targeted at MDPs with large,

possibly uncountable, state spaces and relatively smaller finite action spaces. The

primary setting in this chapter will be finite horizon models, which lead to a recursive

structure, but the algorithms can also be modified for infinite horizon problems. For

example, once we have an algorithm that estimates the optimal value/policy for finite

horizon problems, we can create a nonstationary randomized policy in an on-line

manner in the context of “planning” or receding horizon control for solving infinite

horizon problems.

3.1. Upper Confidence Bound Sampling. The first algorithm, called the

upper confidence bound (UCB) sampling algorithm, is based on the expected regret

analysis for multi-armed bandit problems, in which the sampling is done based on up-

per confidence bounds generated by simulation-based estimates. We have developed

several estimators based on the algorithm, and established the asymptotic unbiased-

ness of these estimators [8]. For one of the estimators, the convergence proof also

leads to a characterization of the rate of convergence; specifically, we show that an

upper bound for the bias converges to zero at rate O
(

∑H−1
i=0

ln Ni

Ni

)

, where Ni is the

total number of samples that are used per state sampled in stage i; furthermore, the

logarithmic bound in the numerator is achievable uniformly over time. The running

time-complexity of the algorithm is at worst O
(

(|A|maxi=0,...,H−1 Ni)
H

)

, which is

independent of the state space size, but depends on the size of the action space,

because the algorithm requires that each action be sampled at least once for each

sampled state.

The goal of the multi-armed bandit problem is to play as often as possible the ma-

chine that yields the highest (expected) reward (cf. [19], [1], [2]). The regret quantifies

the exploration/exploitation dilemma in the search for the true “optimal” machine,

which is unknown in advance. During the search process, we wish to explore the
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reward distribution of different machines while also frequently playing the machine

that is empirically best thus far. The regret is the expected loss due to not always

playing the true optimal machine. For an optimal strategy the regret grows at least

logarithmically in the number of machine plays, and the logarithmic regret is also

achievable uniformly over time with a simple and efficient sampling algorithm for ar-

bitrary reward distributions with bounded support. We incorporate these results into

a sampling-based process for finding an optimal action in a state for a single stage

of an MDP by appropriately converting the definition of regret into the difference

between the true optimal value and the approximate value yielded by the sampling

process. We then extend the one-stage sampling process into multiple stages in a

recursive manner, leading to a multi-stage (sampling-based) approximation algorithm

for solving MDPs.

3.1.1. Algorithm Description and Convergence. Suppose we estimate

Q∗
i (x, a) by a sample mean Q̂i(x, a) for each action a ∈ A(x), where

Q̂i(x, a) =
1

N i
a(x)

Ni
a(x)
∑

j=1

R′(x, a, wa
j ) + γV̂

Ni+1

i+1 (f(x, a, wa
j )),(13)

where N i
a(x) is the number of times action a has been sampled from state x in stage

i (
∑

a∈A(x) N i
a(x) = Ni), the sequence {wa

j , j = 1, ..., N i
a(x)} is the corresponding

random numbers to generate the next states. Note that the number of next state

samples depends on the state x, action a, and stage i. Suppose also that we estimate

the optimal value of V ∗
i (x) by

V̂ Ni

i (x) =
∑

a∈A(x)

Nx
a,i

Ni
Q̂i(x, a).

This leads to the following recursion:

V̂ Ni

i (x) :=
∑

a∈A(x)

N i
a(x)

Ni





1

N i
a(x)

Ni
a(x)
∑

j=1

R′(x, a, wa
j ) + γV̂

Ni+1

i+1 (f(x, a, wa
j ))



 ,

i = 0, ..., H − 1, with V̂ NH

H (x) = 0 for all x ∈ X and any NH > 0.

In the above definition, the total number of sampled (next) states is O(NH) with

N = maxi=0,...,H−1 Ni, which is independent of the state space size. One approach

is to select “optimal” values of N i
a(x′) for i = 0, ..., H − 1, a ∈ A(x′), and x′ ∈ X ,

such that the expected error between the values of V̂ N0

0 (x) and V ∗
0 (x) is minimized,

but this problem would be difficult to solve. So instead we seek the values of N i
a(x′)

for i = 0, ..., H − 1, a ∈ A(x′), and x′ ∈ X such that the expected difference is

bounded as a function of N i
a(x′) and Ni, i = 0, ..., H − 1, and that the bound (from

above and from below) goes to zero as Ni, i = 0, ..., H − 1, go to infinity. We
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present an allocation rule (sampling algorithm) that adaptively chooses which action

to sample, updating the value of N i
a(x′) as the sampling process proceeds, such that

the value function estimator is asymptotically unbiased, i.e., E[V̂ N0

0 (x)]→ V ∗
0 (x), as

Ni →∞, ∀ i = 0, ..., H − 1, and an upper bound on the bias converges to zero at rate

O(
∑

i
ln Ni

Ni
), where the logarithmic bound in the numerator is achievable uniformly

over time.

As mentioned before, the main idea behind the adaptive allocation rule is based

on a simple interpretation of the regret analysis of the multi-armed bandit problem, a

well-known model that captures the exploitation/exploration trade-off. An M -armed

bandit problem is defined by random variables ηi,n for 1 ≤ i ≤ M and n ≥ 1,

where successive plays of machine i yield “rewards” ηi,1, ηi,2, ..., which are indepen-

dent and identically distributed according to an unknown but fixed distribution ηi

with unknown expectation µi. The rewards across machines are also independently

generated. Let Ti(n) be the number of times machine i has been played by an algo-

rithm during the first n plays. Define the expected regret ρ(n) of an algorithm after n

plays by

ρ(n) = µ∗n−
M
∑

i=1

µiE[Ti(n)] where µ∗ := max
i

µi.

Any algorithm that attempts to minimize this expected regret must play a best ma-

chine (one that achieves µ∗) exponentially (asymptotically) more often than the other

machines, leading to ρ(n) = Θ(lnn). One way to achieve the asymptotic logarith-

mic regret is to use upper confidence bounds, which capture the trade off between

exploitation – choosing the machine with the current highest sample mean – and ex-

ploration – trying other machines that might have higher actual means. This leads

to an easily implementable algorithm in which the machine with the current highest

upper confidence bound is chosen.

For an intuitive description of the allocation rule, consider first only the one-stage

approximation. That is, we assume for now that V ∗
1 (x)-value for each sampled state

x ∈ X is known. To estimate V ∗
0 (x), obviously we need to estimate Q∗

0(x, a∗), where

a∗ ∈ argmaxa∈A(x)(Q
∗
0(x, a)). The search for a∗ corresponds to the search for the best

machine in the multi-armed bandit problem. We start by sampling a random number

wa ∼ U(0, 1) for each possible action once at x, which leads to the next (sampled)

state f(x, a, wa) according to f and reward R′(x, a, wa). We then iterate as follows

(see Loop in Figure 1). The next action to sample is the one that achieves the

maximum among the current estimates of Q∗
0(x, a) plus its current upper confidence

bound (see Equation (15)), where the estimate Q̂0(x, a) is given by the sample mean

of the immediate reward plus V ∗
1 -values (multiplied by the discount factor) at the

sampled next states that have been sampled so far (see Equation (16)).
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Among the N0 samples for state x, N0
a (x) denotes the number of samples using

action a. If the sampling is done appropriately, we might expect that N0
a (x)/N0

provides a good estimate of the likelihood that action a is optimal in state x, because

in the limit as N0 → ∞, the sampling scheme should lead to N0
a∗(x)/N0 → 1 if a∗

is the unique optimal action, or if there are multiple optimal actions, say a set A∗,

then
∑

a∈A∗ N0
a (x)/N0 → 1, i.e.,

{

N0
a (x)/N0

}

a∈A(x)
should converge to a probability

distribution concentrated on the set of optimal actions. For this reason, we use a

weighted (by N0
a (x)/N0) sum of the currently estimated value of Q∗

0(x, a) over A(x) to

approximate V ∗
0 (x) (see Equation (17)). Ensuring that the weighted sum concentrates

on a∗ as the sampling proceeds will ensure that in the limit the estimate of V ∗
0 (x)

converges to V ∗
0 (x).

Figure 1 presents a high-level description of the upper confidence bound (UCB)

adaptive sampling algorithm for estimating V ∗
0 (x) for a given state x. The inputs to

the algorithm are a state x ∈ X , Ni ≥ maxx∈X |A(x)|, and stage i, and the output

is V̂ Ni

i (x), the estimate of V ∗
i (x). Whenever we encounter V̂ Nk

k (y) for a state y ∈ X

and stage k in the Initialization and Loop portions of the algorithm, we need to

call the algorithm recursively (at Equation (14) and (16)). The initial call to the

algorithm is done with i = 0, the initial state x0, and N0, and every sampling is done

independently of the previously samplings. To help understand how the recursive

calls are made sequentially, in Figure 2, we graphically illustrate the sequence of calls

with two actions and H = 3 for the Initialization portion.

The running time complexity of the UCB sampling algorithm is O((|A|N)H ) with

N = maxi Ni. To see this, let Mi be the number of recursive calls made to compute

V̂ Ni

i in the worst case. At stage i, the algorithm makes at most Mi = |A|NiMi+1

recursive calls (in Initialization and Loop), leading to M0 = O((|A|N)H ). In con-

trast, backward induction has O(H |A||X |2) running time-complexity. Therefore, the

main benefit of the UCB sampling algorithm is independence from the state space size,

but this comes at the expense of exponential (versus linear, for backwards induction)

dependence on both the action space and the horizon length.

The main convergence theorem for the UCB sampling algorithm is as follows [8].

Theorem 3.1. Assume that |A(x)| > 1 for all x ∈ X. Suppose the UCB sampling

algorithm is run with the input Ni for stage i = 0, ..., H − 1 and an arbitrary initial

state x ∈ X. Then

(1)

lim
N0→∞

lim
N1→∞

· · · lim
NH−1→∞

E[V̂ N0

0 (x)] = V ∗
0 (x).

(2) Moreover, the bias induced by the algorithm is bounded by a quantity that
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Upper Confidence Bound (UCB) Sampling Algorithm

Input: a state x ∈ X, Ni ≥ maxx∈X |A(x)|, and stage i. Output: V̂
Ni
i (x).

Initialization: Sample a random number wa ∼ U(0, 1) for each action a ∈ A(x) and

set

Q̂i(x, a) =

(
0 if i = H and go to Exit

R′(x, a, wa) + γV̂
Ni+1

i+1 (f(x, a, wa)) if i 6= H
(14)

and set n̄ = |A(x)|.

Loop: Sample wã∗

∼ U(0, 1) for an action ã∗, an estimate of the optimal action a∗,

that achieves

max
a∈A(x)

 
Q̂i(x, a) + Rmax(H − i)

s
2 ln n̄

N i
a(x)

!
,(15)

where N i
a(x) is the number of random number samples for action a that has been sampled

so far, n̄ is the overall number of samples so far for this stage,

and Q̂i is defined by

Q̂i(x, a) =
1

N i
a(x)

Ni
a(x)X

j=1

R′(x, a, wa
j ) + γV̂

Ni+1

i+1 (f(x, a, wa
j )),(16)

where {wa
j }, j = 1, ...,N i

a(x) refers to the sampled random number sequence thus far for

the sampled execution of the action a.

– Update N i
ã∗(x)← N i

ã∗(x) + 1.

– Update Q̂i(x, ã∗) with the V̂
Ni+1

i+1 (f(x, ã∗, wã∗

)) value.

– n̄← n̄ + 1. If n̄ = Ni, then exit Loop.

Exit: Set V̂
Ni
i (x) such that

V̂ Ni
i (x) =

8<: P
a∈A(x)

Ni
a(x)

Ni
Q̂i(x, a) if i = 0, ..., H − 1

0 if i = H.
(17)

and return V̂
Ni
i (x).

Fig. 1. Upper Confidence Bound (UCB) sampling algorithm description

converges to zero at rate O
(
∑H−1

i=0
ln Ni

Ni

)

, i.e.,

V ∗
0 (x)− E[V̂ N0

0 (x)] ≤ O
(

H−1
∑

i=0

lnNi

Ni

)

, x ∈ X.

3.1.2. Two Additional Estimators. In addition to the original estimator

given by Equation (17), two alternative estimators are considered in [8]. First, consider

the estimator that replaces the weighted sum of the Q-value estimates in Equation (17)

by the maximum of the estimates, i.e., for i < H ,

V̂ Ni

i (x) = max
a∈A(x)

Q̂i(x, a),(18)

Q̂i(x, a) =
1

N i
a(x)

Ni
a(x)
∑

j=1

R′(x, a, wa
j ) + γV̂i+1(f(x, a, wa

j )).
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sampled subtree
from the node x

x

Fig. 2. Graphical illustration of the sequence of recursive calls made in Initialization of the

UCB sampling algorithm. Each circle corresponds to a state and each arrow with noted action

signifies a sampling of a random number for the action (and a recursive call). The bold-face number

near each arrow is the sequence number for the recursive calls made. For simplicity, the entire Loop

process is signified by one call number.

For the nonadaptive case, it can be shown that this estimator is also asymptotically

unbiased, but with a finite-sample “optimistic” bias in the opposite direction as the

original estimator (i.e., upwards for maximization problems and downwards for min-

imization problems such as the inventory control problem).

Next, consider an estimator that chooses the action that has been sampled the

most thus far in order to estimate the value function. It can be easily shown that this

estimator is less optimistic than the previous alternative, and so we combine it with

the original estimator to obtain the following alternative estimator:

V̄i(x) = max







Q̄i(x, a∗),
∑

a∈A(x)

N i
a(x)

Ni
Q̄i(x, a)







,(19)

where a∗ = arg max
a
{N i

a(x)},

Q̄i(x, a) =
1

N i
a(x)

Ni
a(x)
∑

j=1

R′(x, a, wa
j ) + γV̄i+1(f(x, a, wa

j )).

Intuitively, the rationale behind combining via the max operator, instead of just the
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straightforward V̄i(x) = Q̄i(x, a∗), is that the estimator would be choosing the best

between two possible estimates of the Q-function. Actually, a similar combination

could also be used for Equation (18), as well, to derive yet another possible estimator.

It is conjectured that both of these two alternatives are asymptotically unbiased,

with the estimator given by Equation (18) having an “optimistic” bias (i.e., high

for maximization problems, low for minimization problems). If so, valid, albeit con-

servative, confidence intervals for the optimal value could also be easily derived by

combining the two oppositely biased estimators. Such a result can be established for

the nonadaptive versions of the estimators, but proving these results in our setting

and characterizing the convergence rate of the estimator given by Equation (18) in a

similar manner as for the original estimator are ongoing research problems.

Numerical results for this algorithms with all three estimators are presented in [8].

3.2. Pursuit Learning Automata Sampling. The second algorithm in the

section is the pursuit learning automata (PLA) sampling algorithm. In [10], we present

and analyze the finite-time behavior of the PLA sampling algorithm, providing a

bound on the probability that a given initial state takes the optimal action, and

a bound on the probability that the difference between the optimal value and the

estimate of it exceeds a given error.

Similar to the UCB algorithm, the PLA sampling algorithm constructs a sam-

pled tree in a recursive manner to estimate the optimal value at an initial state and

incorporates an adaptive sampling mechanism for selecting which action to sample

at each branch in the tree. However, whereas the sampling in the UCB algorithm

is based on the exploration-exploitation tradeoff captured by a multi-armed bandit

model, the PLA sampling algorithm’s sampling is based on a probability estimate for

the optimal action. The analysis of the UCB sampling algorithm is given in terms of

the expected bias, whereas for the PLA sampling algorithm we provide a probability

bound.

The PLA sampling algorithm extends in a recursive manner (for sequential deci-

sions) the Pursuit algorithm of Rajaraman and Sastry [26] to the context of solving

MDPs. The Pursuit algorithm is based on learning automata and is designed to solve

(non-sequential) stochastic optimization problems. A learning automaton [23] [24]

[33] [20] is associated with a finite set of actions (candidate solutions) and updates

a probability distribution over the set by iterative interaction with an environment

and takes (samples) an action according to the newly updated distribution. The en-

vironment provides a certain reaction (reward) to the action taken by the automaton,

where the reaction is random and the distribution is unknown to the automaton.

The automaton’s aim is to learn to choose the optimal action that yields the highest

average reward. In the Pursuit algorithm, the automaton pursues the current best
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optimal action obtained from the current estimates of the average rewards of taking

each action. Rajaraman and Sastry [26] derived bounds on the number of iterations

and the parameter of the learning algorithm for a given accuracy of performance of

the automaton, characterizing the finite time behavior of the automaton.

The PLA sampling algorithm’s sampling process of taking an action at the sam-

pled state is adaptive at each stage. At each sampled state at a stage, a fixed sampling

budget is allocated among feasible actions as in the UCB sampling algorithm, and

the budget is used with the current probability estimate for the optimal action. A

sampled state corresponds to an automaton and updates certain functions (including

the probability distribution over the action space) at each iteration of the algorithm.

Based on the finite-time analysis of the Pursuit algorithm, we have analyzed the

finite-time behavior of the PLA sampling algorithm, providing a bound on the prob-

ability that the initial state at stage 0 takes the optimal action in terms of sampling

parameters of the PLA sampling algorithm and a bound on the probability that the

difference between the estimate of V ∗
0 (x0) and V ∗

0 (x0) exceeds a given error.

We first provide a high-level description of the PLA sampling algorithm to esti-

mate V ∗
0 (x0) for a given initial state x0 via this set of equations. The inputs to the

PLA sampling algorithm are the stage i, a state x ∈ X , and sampling parameters

Ni > 0, µi ∈ (0, 1), and the output of the PLA algorithm is V̂ Ni

i (x), the estimate of

V ∗
i (x), where V̂ NH

H (x) = V NH

H (x) = 0 ∀NH , x ∈ X . Whenever V̂
Ni′

i′ (y) (for stage

i′ > i and state y) is encountered in the Loop portion of the PLA sampling algorithm,

a recursive call to the PLA sampling algorithm is required (at Equation (20)). The

initial call to the PLA sampling algorithm is done with stage i = 0, the initial state

x0, N0, and µ0, and every sampling is independent of previous samplings.

Basically, the PLA sampling algorithm builds a sampled tree of depth H with

the root node being the initial state x0 at stage 0 and a branching factor of Ni at

each level i (level 0 corresponds to the root). The root node x0 corresponds to an

automaton and initializes the probability distribution over the action space Px0
as

the uniform distribution (refer to Initialization in the PLA sampling algorithm).

The x0-automaton then samples an action and a random number (an action and a

random number together corresponding to an edge in the tree) independently with

respect to the current probability distribution Px0
(k) and U(0, 1), respectively, at

each iteration k = 0, ..., N0 − 1. If action a(k) ∈ A(x0) is sampled, the count variable

N0
a(k)(x0) is incremented. From the sampled action a(k) and the random number wk,

the automaton obtains an environment response

R′(x0, a(k), wk) + V̂ N1

1 (f(x0, a(k), wk)).

Then by averaging the responses obtained for each action a ∈ A(x0) such that
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Pursuit Learning Automata (PLA) Sampling Algorithm

• Input: stage i 6= H, state x ∈ X, Ni > 0, µi ∈ (0, 1).

(If i = H, then Exit immediately, returning V
NH
H

(x) = 0.)

• Initialization: Set Px(0)(a) = 1/|A(x)|, N i
a(x) = 0, M

Ni
i (x, a) = 0 ∀a ∈ A(x); k = 0.

• Loop until k = Ni:

– Sample a(k) ∼ Px(k), wk ∼ U(0, 1).

– Update Q-value estimate for a = a(k) only:

M
Ni
i (x, a(k))←M

Ni
i (x, a(k))

+R′(x, a(k), wk) + V̂
Ni+1

i+1 (f(x, a(k), wk)),(20)

N i
a(k)(x)← N i

a(k)(x) + 1,

Q̂
Ni
i (x, a(k))←

M
Ni
i (x, a(k))

N i
a(k)

(x)
.

– Update optimal action estimate: (ties broken arbitrarily)

(21) â∗ = argmax
a∈A(x)

Q̂
Ni
i (x, a).

– Update probability distribution over action space:

(22) Px(k + 1)(a) ← (1 − µi)Px(k)(a) + µiI{a = â∗} ∀a ∈ A(x),

where I{·} denotes the indicator function.

– k ← k + 1.

• Exit: Return V̂
Ni
i (x) = Q̂

Ni
i (x, â∗).

Fig. 3. Pursuit Learning Automata (PLA) sampling algorithm description

N0
a (x0) > 0, the x0-automaton computes a sample mean for Q∗

0(x0, a):

Q̂N0

0 (x0, a) =
1

N0
a (x0)

∑

j:a(j)=a

R′(x0, a, wj) + V̂ N1

1 (f(x0, a, wj)),

where
∑

a∈A(x0)
N0

a (x0) = N0. At each iteration k, the x0-automaton obtains an

estimate of the optimal action by taking the action that achieves the current best

Q-value (cf. Equation (21)) and updates the probability distribution Px0
(k) in the

direction of the current estimate of the optimal action â∗ (cf. Equation (22)). In

other words, the automaton pursues the current best action, and hence the nonre-

cursive one-stage version of this algorithm is called the Pursuit algorithm [26]. After

N0 iterations, the PLA sampling algorithm estimates the optimal value V ∗
0 (x0) by

V̂ N0

0 (x0) = Q̂N0

0 (x0, â
∗).

The overall estimate procedure is replicated recursively at those sampled states

(corresponding to nodes in level 1 of the tree) f(x0, a(k), wk)-automata, where the

estimates returned from those states V̂ N1

1 (f(x0, a(k), wk)) comprise the environment

responses for the x0-automaton.

The running time complexity of the PLA sampling algorithm is O(NH) with
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N = maxi Ni, independent of the state space size. (For some performance guarantees,

the value N depends on the size of the action space; see the next section.)

3.2.1. Convergence Results. We first make an assumption for the purpose of

the analysis. The assumption states that at each stage, the optimal action is unique

at each state. In other words, the given MDP has a unique optimal policy. We will

comment on this at the end of this section.

Assumption 3.1. For all x ∈ X and i = 0, 1, ..., H − 1,

θi(x) := Q∗
i (x, a∗)−max

a6=a∗

Q∗
i (x, a) > 0,

where V ∗
i (x) = Q∗

i (x, a∗).

Some notation is necessary in order to state the convergence results, which are

proved in [10]. Define θ := infx∈X,i=0,...,H−1 θi(x). Given δi ∈ (0, 1), i = 0, ..., H − 1,

define

(23) ρ := (1− δ0)

H−1
∏

i=1

(1− δi)
Qi

j=1
Nj .

Also, let

(24) λ(ǫ, δ) =

⌈

2Mǫ,δ

ln l
ln

[

lMǫ,δ

ln l

(

2Mǫ,δ

δ

)
1

Mǫ,δ

]⌉

with

Mǫ,δ = max

{

6,

⌈

RmaxH ln(4/δ)

(RmaxH + ǫ) ln((RmaxH + ǫ)/RmaxH)− ǫ

⌉}

and l = 2|A(x)|/(2|A(x)| − 1).

The convergence results for the PLA sampling algorithm are as follows.

Theorem 3.2. Assume that Assumption 3.1 holds. Given δi ∈ (0, 1), i =

0, ..., H − 1, select Ni > λ(θ/2i+2, δi) and 0 < µi < µ∗
i = 1 − 2−1/Ni , i = 1, ..., H − 1.

If

N0 > λ(θ/4, δ0) +

⌈

ln 1
ǫ

ln 1
1−µ∗

0

⌉

and 0 < µ0 < µ∗
0 = 1 − 2−1/λ(θ/4,δ0), then under the PLA sampling algorithm with ρ

in Equation (23), for all ǫ ∈ (0, 1),

P (Px0
(N0)(a

∗) > 1− ǫ) > ρ,

where a∗ ∈ argmaxa∈A(x0) Q∗
0(x0, a).
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Theorem 3.3. Assume that Assumption 3.1 holds. Given δi ∈ (0, 1), i =

0, ..., H − 1 and ǫ ∈ (0, θ], select Ni > λ( ǫ
2i+2 , δi), 0 < µi < µ∗

i = 1 − 2
− 1

Ni , i =

0, ..., H − 1. Then under the PLA sampling algorithm with ρ in Equation (23),

P
(∣

∣

∣V̂ N0

0 (x0)− V ∗
0 (x0)

∣

∣

∣ >
ǫ

2

)

< 1− ρ.

From the statements of Theorems 3.2 and 3.3, the performance of the PLA sam-

pling algorithm depends on the value of θ. If θi(x) is very small or even 0 (failing

to satisfy Assumption 3.1) for some x ∈ X , the PLA sampling algorithm requires

a very high sampling-complexity to distinguish between the optimal action and the

second best action or multiple optimal actions if x is in the sampled tree of the PLA

sampling algorithm. In general, the larger θ is, the more effective the algorithm will

be (the smaller the sampling complexity). Therefore, in the actual implementation

of the PLA sampling algorithm, if multiple actions’ performances are very close after

“enough” iterations in Loop, it would be advisable to keep only one action among the

competitive actions (transferring the probability mass). The parameter θ can thus be

viewed as a measure of problem difficulty.

Furthermore, to achieve a certain approximation guarantee at the root level of

the sampled tree (i.e., the quality of V̂ N0

0 (x0)), we need a geometric increase in the

accuracies of the optimal reward-to-go values for the sampled states at the lower levels,

making it necessary that the total number of samples at the lower levels increase

geometrically (Ni depends on 2i+2/θ). This is because the estimate error of V ∗
i (xi)

for some xi ∈ X affects the estimate of the sampled states in the higher levels in a

recursive manner (the error in a level “adds up recursively”).

However, the probability bounds in Theorem 3.2 and 3.3 are obtained with coarse

estimation of various parameters/terms. For example, we used the worst case values of

θi(x), x ∈ X, i = 0, ..., H−1 and (RmaxH)2 for bounding supx∈X V ∗
i (x), i = 0, ..., H−

1, and used some conservative bounds in the proofs and in relating the probability

bounds for the estimates at the two adjacent levels. Considering this, the performance

of the PLA sampling algorithm should probably be more effective in practice than

the analysis indicates here.

The application of the PLA sampling algorithm to partially observed MDPs is

also discussion in [10].

4. Population-Based Evolutionary Approaches. In this section, we present

evolutionary population-based algorithms for finding optimal (stationary) policies in-

finite horizon MDPs. These algorithms are primarily intended for problems with

large (possibly uncountable) action spaces where the policy improvement step in Pol-

icy Iteration (PI) becomes computationally prohibitive, and value iteration is also
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impractical. In particular, for PI, maximizing over the entire action space may re-

quire enumeration or random search methods. The computational complexity of each

iteration of our algorithms is polynomial in the size of the state space, but unlike

PI and VI, it is insensitive to the size of the action space, making the algorithms

most suitable for problems with relatively small state spaces compared to the size

of the action spaces. In the case of uncountable action spaces, our approach avoids

the need for any discretization; discretization can lead to computational difficulties,

either resulting in an action space that is too large or in a solution that is not accurate

enough.

The approach taken by the algorithms in this section directly searches the policy

space to avoid carrying out an optimization over the entire action space at each PI

step, and resembles that of a standard genetic algorithm (GA), updating a popula-

tion of policies using appropriate analogous operations for the MDP setting. One

key feature of the algorithms presented here is the determination of an elite policy

that is superior to the performances of all policies in the previous population. This

monotonicity property ensures that the algorithms converge with probability one to

a population in which the elite policy is an optimal policy.

We begin with a basic algorithm called Evolutionary Policy Iteration (EPI) that

contains the main features of the population-based approach and present results for

the theoretical convergence of the EPI algorithm. We then enhance the algorithm

considerably to allow it to be more efficient for practical problems.

4.1. Evolutionary Policy Iteration. In this section, we present the Evolu-

tionary Policy Iteration (EPI) algorithm (see [9] for more detail and proofs), which

eliminates the operation of maximization over the entire action space in the pol-

icy improvement step by directly manipulating policies via a method called “policy

switching” that generates an improved policy from a set of given policies. The compu-

tation time for generating such an improved policy is on the order of the state space

size.

As with all evolutionary/GA algorithms, we define the kth generation population,

(k = 0, 1, 2, ...), denoted by Λ(k), which is a set of policies in Πs, and n = |Λ(k)| ≥ 2

is the population size, which we take to be constant in each generation. Given the

fixed initial state probability distribution δ defined over X , we define the average

value of π for δ or fitness value of π: Jπ
δ =

∑

x∈X V π(x)δ(x). Note that an optimal

policy π∗ satisfies for any π ∈ Πs, Jπ∗

δ ≥ Jπ
δ . We denote Pm as the mutation selection

probability, Pg the global mutation probability, and Pl the local mutation probability.

For each state x ∈ X , we also define action selection distribution Px as a probability

distribution over A(x) such that
∑

a∈A(x)Px(a) = 1 and Px(a) > 0 for all a ∈ A(x).

The mutation probability determines whether or not π(x) is changed (mutated) for
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Evolutionary Policy Iteration (EPI)

Initialization:

Select population size n and K > 0. Λ(0) = {π1, ..., πn}, where πi ∈ Πs.

Set N = k = 0, Pm, Pg, Pl ∈ (0, 1], and π∗(−1) = π1.

Repeat:

Policy Switching:

– Obtain V π for each π ∈ Λ(k).

– Generate the elite policy of Λ(k) defined as

π∗(k)(x) ∈ {argmax
π∈Λ(k)

(V π(x))(x)}, x ∈ X.

– Stopping Rule:

∗ If J
π∗(k)
δ

6= J
π∗(k−1)
δ

, N = 0.

∗ If J
π∗(k)
δ

= J
π∗(k−1)
δ

and N = K, terminate EPI.

∗ If J
π∗(k)
δ

= J
π∗(k−1)
δ

and N < K, N ← N + 1.

– Generate n− 1 random subsets Si, i = 1, ..., n− 1 of Λ(k)

by selecting m ∈ {2, ..., n− 1} with equal probability

and selecting m policies in Λ(k) with equal probability.

– Generate n− 1 policies π(Si) defined as:

π(Si)(x) ∈ {argmax
π∈Si

(V π(x))(x)}, x ∈ X.

Policy Mutation: For each policy π(Si), i = 1, ..., n− 1,

– Generate a “globally” mutated policy πm(Si) with Pm using Pg and Px,

or a “locally” mutated policy πm(Si) with 1− Pm using Pl and Px.

Population Generation:

– Λ(k + 1) = {π∗(k), πm(Si)}, i = 1, ..., n− 1.

– k ← k + 1.

Fig. 4. Evolutionary Policy Iteration (EPI)

each state x, and the action selection distribution Px is used to change π(x) (see

Section 4.1.2 for details). A high-level description of EPI is shown in Figure 4, where

some steps (e.g., mutation) are described at a conceptual level, with details provided

in the following subsections.

The EPI algorithm’s convergence is independent of the initial population Λ(0)

mainly due to the Policy Mutation step. We can randomly generate an initial

population or start with a set of heuristic policies. A simple example initialization

is to set Λ(0) such that for each policy in Λ(0), the same action is prescribed for all

states, but each policy in the initial population prescribes a different action.

4.1.1. Policy Switching. One of the basic procedural steps in GA is to select

members from the current population to create a “mating pool” to which “crossover”

is applied; this step is called “parent selection”. Similarly, we can design a “policy

selection” step to create a mating pool; there are many ways of doing this. The
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Policy Switching step includes this selection step implicitly.

Given a nonempty subset ∆ of Πs, we define a policy πps generated by policy

switching with respect to ∆ as

(25) πps(x) ∈ {argmax
π∈∆

(V π(x))(x)}, x ∈ X.

It has been shown that the policy generated by policy switching improves any policy

in ∆ (Theorem 3 in [7]):

Theorem 4.1. Consider a nonempty subset ∆ of Πs and the policy πps generated

by policy switching with respect to ∆ given in (25). Then, for all x ∈ X, V πps(x) ≥

maxπ∈∆ V π(x).

This theorem immediately can be used to obtain the following result relevant for

the EPI algorithm.

Corollary 4.1. Consider a nonempty subset ∆ of Πs and the policy πps gen-

erated by policy switching with respect to ∆ given in (25). Then, for any initial state

distribution δ, J
πps

δ ≥ maxπ∈∆ Jπ
δ .

We first generate a policy π∗(k), called the elite policy with respect to the current

population Λ(k), which improves any policy in Λ(k) via policy switching. Thus, the

new population Λ(k+1) contains a policy that is superior to any policy in the previous

population, i.e., the following monotonicity property holds:

Lemma 4.1. For any δ and for all k ≥ 0, J
π∗(k)
δ ≥ J

π∗(k−1)
δ .

We then generate n− 1 random subsets Si(i = 1, ..., n− 1) of Λ(k) as follows. We

first select m ∈ {2, ..., n− 1} with equal probability and then select m policies from

Λ(k) with equal probability. By applying policy switching, we generate n− 1 policies

defined as

π(Si)(x) ∈ {argmax
π∈Si

(V π(x))(x)}, x ∈ X.

These policies will be mutated to generate a new population (see the next subsection).

Because policy switching directly manipulates policies, eliminating the operation

of maximization over the entire action space, its computational time-complexity is

O(m|X |), where m = |Si|, independent of the action space size, leading to O(nm|X |)

complexity in the Policy Switching step, and hence O(nm|X |3) overall when includ-

ing the O(|X |2) complexity for the policy evaluation needed to compute V π. On the

other hand, applying a single-policy improvement step of PI directly to each policy

in Λ(k), instead of generating π(Si), i = 1, ..., n− 1, is of complexity O(n|X |2|A|).

4.1.2. Policy Mutation and Population Generation. Policy mutation takes

a given policy, and for each state, alters the specified action probabilistically. The

main reason to generate mutated policies is to avoid being caught in local optima,

making a probabilistic convergence guarantee possible.
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We distinguish between two types of mutation – “local” and “global” – which are

differentiated by how much of the policy is likely be changed (mutated). Local muta-

tion is intended to guide the algorithm in obtaining an exact optimal policy through

local search of “nearby” policies, whereas the global mutation allows EPI to escape

from local optima. A high mutation probability indicates that many components of

the policy vector are likely to be mutated, representing a more global change, whereas

a low mutation probability implies that very little mutation is likely to occur, mean-

ing a more localized perturbation. For this reason, we assume that Pl ≪ Pg, with

Pl being very close to zero and Pg being very close to one. The Policy Mutation

step first determines whether the mutation will be global or local, with probability

Pm. If the policy π is globally (locally) mutated, for each state x, π(x) is changed

with probability Pg(Pl). If a mutation does occur, it is carried out according to the

action selection distribution Px, i.e., if the mutated policy is dented by π′, then the

new policy is generated according to P (π′(x) = a) = Px(a), for all mutated states

x (the actions for all other states remain unchanged). For example, one simple Px

is the uniform action selection distribution, in which case the new (mutated) policy

would randomly select a new action for each mutated state x (independently) with

equal probability over the set of admissible actions A(x).

At the kth generation, the new population Λ(k + 1) is simply given by the elite

policy generated from Λ(k) and n−1 mutated policies from π(Si), i = 1, ..., n−1. This

population generation method allows a policy that is poor in terms of the performance,

but might be in the neighborhood of an optimal value located at the top of the very

narrow hill, to be kept in the population so that a new search region can be started

from the policy. This helps EPI avoid from being caught in the region of local optima.

Once we have a new population, we need to test whether EPI should terminate.

Even if the fitness values for the two consecutive elite policies are identical, this does

not necessarily mean that the elite policy is an optimal policy as in PI; thus, we run

the EPI algorithm K more times so that these random jumps by the mutation step will

eventually bring EPI to a neighborhood of the optimum. As the value of K gets larger,

the probability of being in a neighborhood of the optimum increases. Therefore, the

elite policy at termination is optimal with more confidence as K increases.

4.1.3. Convergence.

Theorem 4.2. Given Pm > 0, Pg > 0, Pl > 0, and an action selection dis-

tribution Px such that
∑

a∈A(x)Px(a) = 1 and Px(a) > 0 for all a ∈ A(x) and all

x ∈ X, as K → ∞, V π∗(k)(x) → V π∗

(x), x ∈ X with probability one uniformly over

X, regardless of Λ(0).

Remark 4.1. In our setting, mutation of a specified action in a state is carried

out using a given action selection distribution. If the action space is continuous, say
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[0, 1], a straightforward implementation would only change the least significant digit

for local mutation and the most significant digit for global mutation, if the numbers

in [0, 1] are represented by a certain number of significant digits.

4.1.4. Parallelization. The EPI algorithm can be naturally parallelized and by

doing so, we can improve the running rate. Basically, we partition the policy space

Πs into subsets of {Πi} such that
⋃

i Πi = Πs and Πi ∩Πj = ∅ for all i 6= j. We then

apply EPI into each Πi in parallel and then once each part terminates, the best policy

π∗
i from each part is taken. We apply then policy switching to the set of best policies

{π∗
i }. We state a general result regarding parallelization of an algorithm that solves

an MDP.

Theorem 4.3. Given a partition of Πs such that
⋃

i Πi = Π and Πi ∩Πj = ∅ for

all i 6= j, consider an algorithm A that generates the best policy π∗
i for Πi such that

for all x ∈ X, V π∗

i (x) ≥ maxπ∈Πi
V π(x). Then, the policy π̄ defined as

π̄(x) ∈ {argmax
π∗

i

(V π∗

i (x))(x)}, x ∈ X,

is an optimal policy for Πs.

Note that we cannot just pick the best policy among π∗
i in terms of the fitness

value Jπ
δ . The condition that Jπ

δ ≥ Jπ′

δ for π 6= π′ does not always imply that

V π(x) ≥ V π′

(x) for all x ∈ X even though the converse is true. In other words,

we need a policy that improves all policies π∗
i . Picking the best policy among such

policies does not necessarily guarantee an optimal policy for Πs.

If the number of subsets in the partition is N , the overall convergence of the

algorithm A is faster by a factor of N . For example, if at state x, the action a or b

can be taken, let Π1 = {π|π(x) = a, π ∈ Πs} and Π2 = {π|π(x) = b, π ∈ Πs}. By

using this partition, the convergence rate of the algorithm A will be twice as fast.

By Theorem 4.3, this idea can be applied to PI via policy switching, yielding a

“distributed” PI. Apply PI to each Πi; once PI for each part terminates, combine the

resulting policy for each part by policy switching. The combined policy is an optimal

policy, so that this method will speed up the original PI by a factor of N if the number

of subsets in the partition is N . However, this distributed variant of PI requires the

maximization operation over the action space in the policy improvement step. The

result of Theorem 4.3 also naturally extends to a dynamic programming version of

PI, similarly to EPI. For example, we can partition Πs into Π1 and Π2, and further

partition Π1 into Π11 and Π12, and Π2 into Π21 and Π22. The optimal substructure

property is preserved by policy switching. If the number of subsets generated in this

way is β, then the overall computation time of an optimal policy is O(β|X |C), where

C is the maximum size of the subsets in terms of the number of policies, because
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policy switching is applied N times with O(|X |) complexity and C is an upper bound

on PI-complexity.

How do we partition the policy space so that PI or EPI converges faster? For some

partitions, we can even obtain the best policies for some subsets analytically. However,

in general, partitioning the policy space to speed up a convergence would be a difficult

problem and would require a structural analysis on the problem or the policy space.

Here, we briefly speculate on three possible ways of partitioning the policy space. Let

N be the number of subspaces. The simplest way of partitioning the policy space is a

random partition, where each policy is assigned to a particular subspace according to

some probability distribution (e.g., uniformly). Another possible approach is to build

a “decision tree” on the policy space based on identification of suboptimal actions.

Assume that there exist a lower bound function V L(x) and an upper bound function

V U (x) such that V L(x) ≤ V ∗(x) ≤ V U (x) for all x ∈ X . Then, if for x ∈ X and

b ∈ A(x),

R(x, b) + γ
∑

y∈X

P (x, b)(y)V U (y) < V L(x),

any stationary policy that uses action b in state x is nonoptimal (cf. Proposition 6.7.3

in [25]). Based on this fact, we start with a particular state x ∈ X and identify

a nonoptimal action set ϕ(x) at x and build subsets Πx,a of the policy space with

a ∈ A(x) − ϕ(x). Effectively, we are building a |A(x) − ϕ(x)|-ary tree with x being

a root. We then repeat this with another state y ∈ X at each child Πx,a of the tree.

We continue building a tree in this way until the number of children at the leaf level

is N . Note that for some problems, nonoptimal actions are directly observable. For

example, for a simple multiclass deadline job scheduling problem of minimizing the

weighted loss, if a job’s deadline is about to expire, all actions selecting a pending

job from a less important class than that of the dying job are nonoptimal. A third

approach is to select some features on policies, and then use the features for building

the decision tree to partition the policy space.

Our discussion on the parallelization of PI and EPI can be viewed in some sense

as an aggregation in the policy space, where the distributed version of PI can be used

to generate an approximate solution of a given MDP.

4.2. Evolutionary Random Policy Search. We now consider a substantial

enhancement of EPI called Evolutionary Random Policy Search (ERPS), introduced

in [17], which proceeds iteratively by constructing and solving a sequence of sub-MDP

problems defined on smaller policy spaces. At each iteration of the algorithm, two

steps are fundamental: (1) The sub-MDP problem constructed in the previous itera-

tion is approximately solved by using a variant of the policy improvement technique

called policy improvement with reward swapping (PIRS), and a policy called an elite
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policy is generated. (2) Based on the elite policy, a group of policies is then obtained

by using a “nearest neighbor” heuristic and random sampling of the entire action

space, from which a new sub-MDP is created by restricting the original MDP prob-

lem (e.g., reward structure, transition probabilities) to the current available subsets

of actions. Under appropriate assumptions, it is shown in [17] that the sequence of

elite policies converges with probability one to an optimal policy. The theoretical

convergence results include the uncountable action space case, whereas those for EPI

required the action space to be finite.

Whereas EPI treats policies as the most essential elements in the action optimiza-

tion step, and each “elite” policy is directly generated from a group of policies, in

ERPS policies are regarded as intermediate constructions from which sub-MDP prob-

lems are then constructed and solved. Furthermore, ERPS combines global search

with a local enhancement step (the “nearest neighbor” heuristic) that leads to rapid

convergence once a policy is found in a small neighborhood of an optimal policy. This

modification substantially improves the performance while maintaining the computa-

tional complexity at essentially the same level.

A high-level description of the ERPS algorithm is summarized in Figure 5. De-

tailed discussion of each of the steps follows.

4.2.1. Initialization. We start by specifying an action selection distribution Px

for each state x ∈ X , the exploitation probability q0 ∈ [0, 1], the population size n,

and a search range ri for each state xi ∈ X . Once chosen, these parameters are

fixed throughout the algorithm. We then select an initial group of policies; however,

because of the exploration step used in ERPS, the performance of the algorithm is

relatively insensitive to this choice. One simple method is to choose the initial policies

uniformly from the policy space Π.

The action selection distribution Px is a probability distribution over the set of

admissible actions A(x), and will be used to generate sub-MDPs (see Section 4.2.3).

The exploitation probability q0 and the search range ri will be used to construct

sub-MDPs; the detailed discussion of these two parameters is deferred to later.

4.2.2. Policy Improvement with Reward Swapping. As mentioned earlier,

the idea behind ERPS is to randomly split a large MDP problem into a sequence of

smaller, manageable MDPs, and to extract a possibly convergent sequence of policies

via solving these smaller problems. For a given policy population Λ = {π1, π2, . . . , πn},

if we restrict the original MDP (e.g., rewards, transition probabilities) to the subsets

of actions Λ(x) := {π1(x), π2(x), . . . , πn(x)} ∀x ∈ X , then a sub-MDP problem is

induced from Λ as GΛ := (X, Γ, Λ(·), P, R), where Γ :=
⋃

x Λ(x) ⊆ A. Note that in

general Λ(x) is a multi-set, which means that the set may contain repeated elements;
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Evolutionary Random Policy Search (ERPS)

• Initialization: Specify an action selection distribution Px for each x ∈ X, the popula-

tion size n > 1, and the exploitation probability q0 ∈ [0, 1]. Specify a search range

ri for each state xi ∈ X, i = 1, . . . , |X|. Select an initial population of policies

Λ0 = {π0
1 , π0

2 , . . . , π0
n}. Construct the initial sub-MDP as GΛ0

:= (X, Γ0,Λ0(·), P, R),

where Γ0 =
S

x Λ0(x). Set π−1
∗ := π0

1 , k = 0.

• Repeat until a specified stopping rule is satisfied:

– Policy Improvement with Reward Swapping (PIRS):

∗ Obtain the value function V πk
j for each πk

j ∈ Λk.

∗ Generate the elite policy for GΛk
as

πk
∗(x) ∈ argmax

u∈Λk(x)

8<:R(x, u) + γ
X
y∈X

P (x, u)(y)[ max
πk

j
∈Λk

V πk
j (y)]

9=; , x ∈ X.

– Sub-MDP Generation:

∗ for j = 2 to n

for i = 1 to |X|

generate random number U ∼ U(0, 1),

if U ≤ q0 (exploitation)

choose the action πk+1
j (xi) in the neighborhood of πk

∗(xi)

by using the “nearest neighbor” heuristic.

elseif U > q0 (exploration)

choose the action πk+1
j (xi) ∈ A(xi) according to Pxi .

end if

end for

end for

∗ Set the next population generation as Λk+1 =
n

πk
∗ , πk+1

2 , . . . , πk+1
n

o
.

∗ Construct a new sub-MDP as GΛk+1
:= (X, Γk+1, Λk+1(·), P, R),

where Γk+1 =
S

x Λk+1(x).

∗ k ← k + 1.

Fig. 5. Evolutionary Random Policy Search

however, we can always discard the redundant members and view Λ(x) as the set of

admissible actions at state x. Since ERPS is an iterative random search algorithm,

rather than attempting to solve GΛ exactly, it is more efficient to use approximation

schemes and obtain an improved policy and/or good candidate policies with worst-

case performance guarantee.

Here we adopt a variant of the policy improvement technique to find an “elite”

policy, one that is superior to all of the policies in the current population, by executing

the following two steps:

Step 1: Obtain the value functions V πj , j = 1, . . . , n, by solving the equations:

(26) V πj (x) = R(x, πj(x)) + γ
∑

y∈X

P (x, (πj(x))(y)V πj (y), ∀x ∈ X.
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Step 2: Compute the elite policy π∗ by

(27) π∗(x) ∈ argmax
u∈Λ(x)







R(x, u) + γ
∑

y∈X

P (x, u)(y)[max
πj∈Λ

V πj (y)]







, ∀x ∈ X.

Since in Equation (27), we are basically performing the policy improvement on the

“swapped reward” maxπj∈Λ V πj (x), we call this procedure “policy improvement with

reward swapping” (PIRS). We remark that the “swapped reward” maxπj∈Λ V πj (x)

may not be the value function corresponding to any policy. The following theorem

shows that the elite policy generated by PIRS improves any policy in Λ (for proofs,

see [17]).

Theorem 4.4. Given Λ = {π1, π2, . . . , πn}, let V̄ (x) = maxπj∈Λ V πj (x) ∀x ∈ X,

and let

µ(x) ∈ argmax
u∈Λ(x)







R(x, u) + γ
∑

y∈X

P (x, u)(y)V̄ (y)







.

Then V µ(x) ≥ V̄ (x), ∀x ∈ X. Furthermore, if µ is not optimal for GΛ, then V µ(x) >

V̄ (x) for at least one x ∈ X.

At the kth iteration, given the current policy population Λk, we compute the kth

elite policy πk
∗ via PIRS. According to Theorem 4.4, the elite policy improves any

policy in Λk, and since πk
∗ is directly used to generate the (k + 1)th sub-MDP (see

Figure 5 and Section 4.2.3), the following monotonicity property follows by induction.

Corollary 4.2. For all k ≥ 0,

V πk+1
∗ (x) ≥ V πk

∗ (x), ∀x ∈ X.

We now provide an intuitive comparison between PIRS and policy switching,

which is used in EPI and directly operates upon individual policies in the population

via (25), with a computational complexity is O(n|X |). For a given group of policies

Λ, let Ω be the policy space for the sub-MDP GΛ; it is clear that the size of Ω is on the

order of n|X|. Policy switching only takes into account each individual policy in Λ,

while PIRS tends to search the entire space Ω, which is much larger than Λ. Although

it is not clear in general that the elite policy generated by PIRS improves the elite

policy generated by policy switching, since the policy improvement step is quite fast

and it focuses on the best policy updating directions, we believe this will be the case

in many situations. For example, consider the case where one particular policy, say

π̄, dominates all other policies in Λ. It is obvious that policy switching will choose π̄

as the elite policy; thus, no further improvement can be achieved. In contrast, PIRS

considers the sub-MDP GΛ; as long as π̄ is not optimal for GΛ, a better policy can

always be obtained (cf. the related discussion in [7]).
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The computational complexity of each iteration of PIRS is approximately the

same as that of policy switching, because step 1 of PIRS, i.e., Equation (26), which

is also used by policy switching, requires solution of n systems of linear equations,

and the number of operations required by using a direct method (e.g., Gaussian

Elimination) is O(n|X |3), and this dominates the cost of step 2, which is at most

O(n|X |2).

4.2.3. Sub-MDP Generation. The description of the “sub-MDP generation”

step in Figure 5 is only at a conceptual level. In order to elaborate, we need to

distinguish between two cases. We first consider the discrete action space case; then

we discuss the setting where the action space is continuous.

4.2.4. Discrete Action Spaces. According to Corollary 4.2, the performance

of the elite policy at the current iteration is no worse than the performances of the elite

policies generated at previous iterations; thus the PIRS step alone can be viewed as a

local search procedure with memory. Our concern now is how to achieve continuous

improvements among the elite policies found at consecutive iterations. One possibility

is to use unbiased random sampling and choose at each iteration a sub-MDP problem

by making use of the action selection distribution Px. The sub-MDPs at successive

iterations are then independent of one another, and it is intuitively clear that we may

obtain improved elite policies after a sufficient number of iterations. Such an unbiased

sampling scheme is very effective in escaping local optima and is often useful in finding

a good candidate solution. However, in practice, persistent improvements will be

more and more difficult to achieve as the number of iterations (sampling instances)

increases, since the probability of finding better elite policies becomes smaller and

smaller. Thus, it appears that a biased sampling scheme could be more helpful,

which can be accomplished by using a “nearest neighbor” heuristic.

To achieve a biased sampling configuration, ERPS combines exploitation (“near-

est neighbor” heuristic) with exploration (unbiased sampling). The key to balance

these two types of searches is the use of the exploitation probability q0. For a given

elite policy π, we construct a new policy, say π̂, in the next population generation as

follows: At each state x ∈ X , with probability q0, π̂(x) is selected from a small neigh-

borhood of π(x); and with probability 1 − q0, π̂(x) is chosen by using the unbiased

random sampling. The preceding procedure is performed repeatedly until we have

obtained n− 1 new policies, and the next population generation is simply formed by

the elite policy π and the n−1 newly generated policies. Intuitively, on the one hand,

the use of exploitation will introduce more robustness into the algorithm and helps

to locate the exact optimal policy, while on the other hand, the exploration step will

help the algorithm to escape local optima and to find attractive policies quickly. In
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effect, we see that this idea is equivalent to altering the underlying action selection

distribution, in that Px is artificially made more peaked around the action π(x).

If we assume that A is a non-empty metric space with a defined metric d(·, ·),

then the “nearest neighbor” heuristic in Figure 5 could be implemented as follows:

Let ri, a positive integer, be the search range for state xi, i = 1, 2, . . . , |X |. We

assume that ri < |A(xi)| for all i, where |A(xi)| is the size of A(xi).

• Generate a random variable l ∼ DU(1, ri), where DU(1, ri) represents the

discrete uniform distribution between 1 and ri. Set πk+1
j (xi) = a ∈ A(xi)

such that a is the lth closest action to πk
∗ (xi) (measured by d(·, ·)).

Remark 4.2. Sometimes the above procedure is not easy to implement. It is

often necessary to index a possibly high-dimensional metric space, whose complexity

will depend on the dimension of the problem and the cost in evaluating the distance

functions. However, we note that the action spaces of many MDP problems are subsets

of ℜN , where many efficient methods can be applied, such as Kd-trees [3] and R-trees

[15]. The most favorable situation is an action space that is “naturally ordered”, e.g.,

in inventory control problems where actions are the number of items to be ordered

A = {0, 1, 2, · · · }, in which case the indexing and ordering becomes trivial.

Remark 4.3. In EPI, policies in a new generation are generated by the so-called

“policy mutation” procedure, where two types of mutations are considered: “global

mutation” and “local mutation”. The algorithm first decides whether to mutate a

given policy π “globally” or “locally” according to a mutation probability Pm. Then

at each state x, π(x) is mutated with probability Pg or Pl, where Pg and Pl are the

respective predefined global mutation and local mutation probabilities. It is assumed

that Pg ≫ Pl; the idea is that “global mutation” helps the algorithm to get out of

local optima and “local mutation” helps the algorithm to fine-tune the solution. If

a mutation is to occur, the action at the mutated state x is changed by using the

action selection probability Px. As a result, we see that each action in a new policy

generated by “policy mutation” either remains unchanged or is altered by pure random

sampling; although the so-called “local mutation” is used, no local search element is

actually involved in the process. Thus, the algorithm only operates at the global level.

We note that this is essentially equivalent to setting the exploitation probability q0 = 0

in our approach.

4.2.5. Continuous Action Spaces. The biased sampling idea in the previous

section can be naturally extended to MDPs with continuous action spaces. We let

BA be the smallest σ-algebra containing all the open sets in A, and choose the action

selection distribution P as a probability measure defined on (A,BA). Again, denote

the metric defined on A by d(·, ·).

By following the “nearest neighbor” heuristic, we now give a general implemen-
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tation of the exploitation step in Figure 5.

Let ri > 0 denote the search range for state xi, i = 1, 2, . . . , |X |.

• Choose an action uniformly from the set of neighbors {a : d(a, πk
∗ (xi)) ≤

ri, a ∈ A(xi)}.

Note the difference in the search range ri between the discrete action space case

and the continuous action space case. In the former case, ri is a positive integer

indicating the number of candidate actions that are the closest to the current elite

action πk
∗ (xi), whereas in the latter case, ri is the distance from the current elite

action, which may take any positive value.

If we further assume that A is a non-empty open connected subset of ℜN with

some metric (e.g., the infinity-norm), then a detailed implementation of the above

exploitation step is as follows.

• Generate a random vector λi = (λi
1, . . . , λ

i
N )T with each λi

h ∼ U [−1, 1] inde-

pendent for all h = 1, 2, . . . , N , and choose the action πk+1
j (xi) = πk

∗ (xi) +

λiri.

• If πk+1
j (xi) /∈ A(xi), then repeat the above step.

In this specific implementation, the same search range ri is used along all directions

of the action space. However, in practice, it may often be useful to generalize ri to a

N -dimensional vector, where each component controls the search range in a particular

direction of the action space.

Remark 4.4. Note that the action space does not need to have any structure

other than being a metric space. The metric d(·, ·) used in the “nearest neighbor”

heuristic implicitly imposes a structure on the action space. It follows that the effi-

ciency of the algorithm depends on how the metric is actually defined. Like most of the

random search methods for global optimizations, our approach is designed to explore

the structure that good policies tend to be clustered together. Thus, in our context, a

good metric should have a good potential in representing this structure. For example,

the discrete metric (i.e., d(a, a) = 0 ∀ a ∈ A and d(a, b) = 1 ∀ a, b ∈ A, a 6= b) should

never be considered as a good choice, since it does not provide us with any useful

information about the action space. For a given action space, a good metric always

exists but may not be known a priori. In the special case where the action space is

a subset of ℜN , we take the Euclidean metric as the default metric, this is in accord

with most of the optimization techniques employed in ℜN .

4.2.6. Stopping Rule. Different stopping criteria can be used. The algo-

rithm is stopped when a predefined maximum number of iterations is reached or

stopped when no further improvement in the value function is obtained for sev-

eral, say K, consecutive iterations. Specifically, the algorithm is stopped if ∃ k >

0, such that ‖V πk+m
∗ − V πk

∗‖ = 0 ∀ m = 1, 2, . . . , K.
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4.3. Convergence Analysis. In this section, we discuss the convergence prop-

erties of ERPS. To do so, the following notation is necessary. As before, denote by

d(·, ·) the metric on the action space A. We define the distance between two policies

π1 and π2 by

d∞(π1, π2) := max
1≤i≤|X|

d(π1(xi), π
2(xi)).

For a given policy π̂ ∈ Π and any σ > 0, we further define the σ-neighborhood of π̂

by

N (π̂, σ) := {π| d∞(π̂, π) ≤ σ, ∀π ∈ Π} .

For each policy π ∈ Π, we also define Pπ as the transition matrix whose (x, y)th

entry is P (x, π(x))(y) and Rπ as the one-stage reward vector whose (x)th entry is

R(x, π(x)).

As the ERPS method is randomized, different runs of the algorithm will give

different sequences of elite policies (i.e., sample paths); thus the algorithm induces a

probability distribution over the set of all sequences of elite policies. We denote by

P̂(·) and Ê(·) the probability and expectation taken with respect to this distribution.

Let ‖ · ‖∞ denote the infinity-norm, given by ‖V ‖∞ := maxx∈X |V (x)|. We have

the following convergence result for the ERPS algorithm.

Theorem 4.5. Let π∗ be an optimal policy with corresponding value function

V π∗

, and let the sequence of elite policies generated by ERPS together with their cor-

responding value functions be denoted by {πk
∗ , k = 1, 2, . . .} and {V πk

∗ , k = 1, 2, . . .},

respectively. Assume that:

1. q0 < 1.

2. For any given ℓ > 0, Px({a| d(a, π∗(x)) ≤ ℓ, a ∈ A(x)}) > 0, ∀x ∈ X, (recall

that Px(·) is a probability measure on the set of admissible actions A(x)).

3. There exist constants σ > 0, φ > 0, L1 < ∞, and L2 < ∞, such that

for all π ∈ N (π∗, σ) we have ‖Pπ − Pπ∗‖∞ ≤ max
{

L1d∞(π, π∗), 1−γ
γ − φ

}

(0 < γ < 1), and ‖Rπ −Rπ∗‖∞ ≤ L2d∞(π, π∗).

Then for any given ε > 0, there exists a random variable Mε > 0 with Ê(Mε) < ∞

such that ‖V πk
∗ − V π∗

‖∞ ≤ ε ∀ k ≥Mε.

Remark 4.5. Assumption 1 restricts the exploitation probability from pure local

search. Assumption 2 simply requires that any “ball” that contains the optimal pol-

icy will have a strictly positive probability measure. It is trivially satisfied if the set

{a|d(a, π∗(x)) ≤ ℓ, a ∈ A(x)} has a positive (Borel) measure ∀ x ∈ X and the action

selection distribution Px has infinite tails (e.g., Gaussian distribution). Assumption

3 imposes some Lipschitz type of conditions on Pπ and Rπ; as we will see, it formal-

izes the notion that near optimal policies are clustered together (see remark 3). The
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assumption can be verified if Pπ and Rπ are explicit functions of π. For a given ε > 0,

such a policy π satisfying ‖V π − V π∗

‖∞ ≤ ε is referred to as an ε-optimal policy.

Remark 4.6. The result in Theorem 4.5 implies the a.s. convergence of the

sequence {V πk
∗ , k = 0, 1, . . .} to the optimal value function V π∗

. To see this, note

that Theorem 4.5 implies that P̂(‖V πk
∗ − V π∗

‖∞ > ε) → 0 as k → ∞ for every

given ε, which means that the sequence converges in probability. Furthermore, since

‖V πk
∗ − V π∗

‖∞ ≤ ε ∀ k ≥ Mε is equivalent to supk̄≥k ‖V
πk̄
∗ − V π∗

‖∞ ≤ ε ∀ k ≥

Mε, we will also have P̂(supk̄≥k ‖V
πk̄
∗ − V π∗

‖∞ > ε) → 0 as k → ∞, and the a.s.

convergence thus follows.

The performance of the population-based algorithms is illustrated with some nu-

merical examples in [17], including a comparison with PI to illustrate the substantial

computational efficiency gains attainable by the approach.

5. Conclusions. This paper provides an overview of a number of recent contri-

butions to the literature on simulation-based algorithms for MDPs. These contribu-

tions include algorithms and convergence results for multi-stage adaptive sampling,

evolutionary policy iteration, and evolutionary random policy search. For a more com-

plete discussion of these methods, including convergence proofs and numerical results,

the reader is referred to the book [11]; this book also includes detailed discussion of

other approaches, including the application of randomized global optimization algo-

rithms and approximate receding horizon control to the solution of MDPs.
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