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MODELLING HIGH-DIMENSIONAL TIME SERIES BY

GENERALIZED LINEAR DYNAMIC FACTOR MODELS:

AN INTRODUCTORY SURVEY

MANFRED DEISTLER∗ AND CHRISTIANE ZINNER∗

Abstract. Factor models are used to condense high dimensional data consisting of many vari-

ables into a much smaller number of factors. Here we present an introductory survey to factor models

for time series, where the factors represent the comovement between the single time series. Principal

component analysis, linear dynamic factor models with idiosyncratic noise and generalized linear

dynamic factor models are introduced and structural properties, such as identifiability, as well as

estimation are discussed.

1. Introduction. Factor analysis has been developed by psychologists for mea-

surement of intelligence in the beginning of the twentieth century. In particular Burt

and Spearman, observing that in tests of mental ability of a person, the scores on

different items tended to be correlated, developed the hypothesis of a common latent

factor, called general intelligence, [6], [19]. In the 1930s, Thurstone and others pro-

posed a more general model allowing for more than one common factor, representing

different mental abilities, [22]. In general, the motivation for the use of factor models

is compression of the information contained in a high dimensional data vector into

a small number of factors and the idea of underlying latent nonobserved variables

influencing the observations.

Whereas the initial approach to factor analysis was oriented to data originating

from independent, identically distributed random variables and consisted in dimen-

sion reduction in the cross-sectional dimension (i.e. the number of variables), the idea

has been further generalized to modelling of multivariate time series, thus compress-

ing information in the cross-sectional and the time dimension. This idea has been

pursued rather independently in a number of areas, such as signal processing, [5], or

econometrics, [15], [17], [10].

The idea of factor analysis is of particular importance, if the cross-sectional di-

mension, n say, is large (in relation to sample size T ), where the so called “curse of

dimensionality” occurs. “Conventional” time series modelling, e.g. by autoregressive

models, leads to a parameter space of dimension proportional to n2, thus the com-
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plexity of the model class shows quadratic dependence on n, whereas the number of

data points, for fixed T is linear in n. Factor models are used to mitigate this curse

of dimensionality.

The basic, common equation for all different kinds of factor models considered

here is of the form

(1) xt = Λ(z)ξt + ut = χt + ut, t ∈ Z,

where xt is the n-dimensional vector of observations, ξt is the r-dimensional factor,

ut is the n-dimensional noise and the transfer function Λ(z) =
∑∞

j=−∞ Λjz
j, Λj ∈

R
n×r is called the factor loading matrix; throughout we assume

∑∞
j=−∞ |j|‖Λj‖ < ∞,

where ‖ ‖ denotes a norm. χt = Λ(z)ξt is called the common component or the latent

variable. Here z is used both for a complex variable and for the backward shift on Z.

Throughout we assume the following:

• Eξt = 0, Eut = 0 for all t ∈ Z.

• Eξtu
′
s = 0 for all s, t ∈ Z, where ′ denotes the transpose.

• (ξt) and (ut) are wide sense stationary and (linearly) regular with covariances

γξ(s) = Eξtξ
′
t+s and γu(s) = Eutu

′
t+s satisfying

(2)

∞
∑

s=−∞
|s|‖γξ(s)‖ < ∞,

∞
∑

s=−∞
|s|‖γu(s)‖ < ∞.

• The spectral density fχ of χt has rank r for all λ ∈ [−π, π].

Then the spectral densities fχ of (χt) and fu of (ut) exist as uniform limits of

trigonometric polynomials and because (ξt) and (ut) are uncorrelated we have using

an obvious notation

(3) fx(λ) = Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ + fu(λ),

where ∗ denotes the conjugate transpose.

The third assumption above implies (see [5]) that, for the case when all eigen-

values are distinct, the eigenvalues of the spectral densities and suitably normalized

eigenvectors have an analogous summability property as in (2).

A special case often considered occurs when Λ(z) = Λ is constant and (ξt) and

(ut) and thus (xt) are white noise. In this case (1) is called static and the variance

matrix of xt, Σx, is, using an obvious notation, of the form:

(4) Σx = ΛΣξΛ
′ + Σu.

If Λ(z) = Λ is constant, but (ξt) and (ut) are not necessarily white noise, the

model is called quasi-static.
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The assumptions imposed so far do not determine a reasonable model class, in

the sense that for given fx, or Σx respectively, too many models would be possible,

see [18]. Thus, in order to obtain reasonable model classes, further assumptions have

to be imposed. This leads to principal component models, linear factor models with

idiosyncratic noise and generalized linear factor models considered in this paper. For

these model classes we are interested in

1. Estimation (of parametrized versions) of Λ(z), fξ and fu,

2. Estimation of the factors ξt and of the latent variables χt = Λ(z)ξt,

3. Forecasting.

Proceeding to estimation in the narrow sense, problems of the structure of such

models, in particular of identifiability have to be discussed.

2. Principal Component Analysis. The aim of principal component analysis

(PCA) is to approximate the n-dimensional observed process (xt) by a filtered version

of itself, whose spectral density is of reduced rank r, such that the variance of the

residuals is minimized, (see [5]). Hence, the additional assumption in the PCA-model

is, that ξt = C(z)xt holds and that the r × n filter C(z) and the n × r filter Λ(z) are

defined such that

(5) tr(Eutu
′
t) = tr

(

E
(

xt − Λ(z)C(z)xt

)(

xt − Λ(z)C(z)xt

)′
)

is minimized for fixed r, where tr denotes the trace.

Let us first consider the static case, where Λ(z) = Λ and C(z) = C are constant

matrices. The solution of the minimization problem (5) is then obtained from the

canonical representation of Σx, decomposed as

(6) Σx = O1Ω1O
′
1 + O2Ω2O

′
2 = Σχ + Σu,

where Ω1 and Ω2 denote the diagonal matrices consisting of the r largest and (n− r)

smallest eigenvalues of Σx, respectively, arranged in decreasing order and O1 =

(o1 . . . or) and O2 = (or+1 . . . on) are the (n × r)- and n × (n − r)-dimensional ma-

trices, respectively, of corresponding eigenvectors. Throughout we assume that all

eigenvalues are distinct.

Then decomposition (6) is unique in the sense that Σχ and Σu are unique for

given Σx and r. However this is not true for Λ and ξt, since post-multiplying Λ with

a nonsingular matrix P and pre-multiplying ξt with its inverse P−1 yields the same

χt. By making the special choice

(7) ξt = O′
1xt, Λ = O1, Σξ = Ω1, ut = O2O

′
2xt.
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we obtain the PCA-model. Here the j-th factor, (o′jxt), j ≤ r, is called the j-th

principal component of (xt).

If Λ is still constant, but (ξt) and (ut) are allowed to be serially correlated, then

we call the PCA-model (7) quasi static.

In the dynamic case, where Λ(z) and C(z) are in general two-sided filters, the

minimization of (5) is solved by the eigenvalue decomposition of the spectral density

fx,

(8) fx(λ) = O1(e
−iλ)Ω1(λ)O1(e

−iλ)∗ + O2(e
−iλ)Ω2(λ)O2(e

−iλ)∗ = fχ(λ) + fu(λ),

where Ω1, Ω2, O1 and O2 are defined analogously to the static case; however, they

are now functions of the frequency λ. Under our assumptions we obtain the dynamic

PCA-model by

(9) ξt = O1(z)∗xt, Λ = O1(z), fξ = Ω1(λ), ut = O2(z)O2(z)∗xt.

Now (oj(z)∗xt) , j ≤ r, is called the j-th dynamic principal component or principal

component series of (xt).

For estimation of the PCA-model analog estimators are used: The population

second moments, Σx and fx, are replaced by their estimators - typically the sam-

ple covariance and a non-parametric estimator of the spectral density. As can be

shown under general assumptions, consistency of these estimators together with the

assumption that all eigenvalues are distinct, which implies that the eigenvalues and

suitably normalized eigenvectors are continuous functions of the original matrices,

yield consistent estimators of Λ, Σξ and Σu and Λ(z), fξ and fu respectively.

For the PCA-model the number of factors r is not intrinsic in the sense, that it is

not a property of fx. By the choice of r, the degree of dimension reduction and, as a

trade-off, the quality of approximation are determined. In dynamic PCA dimension

reduction in the time dimension is performed by introducing a finite dimensional

parametrization. Note, however, that even for rational fx, the matrices on the right

hand side of (8) are not necessarily rational.

3. Factor models with idiosyncratic noise. Here, in addition to the general

assumptions, it is assumed that the noise components are uncorrelated, i.e. that fu

(or in the static case Σu) is diagonal. In other words the basic idea is not to look

for the best approximation of xt by the latent variables χt as in the case of PCA,

but to separate the common components described by the factors from the individual

components described by “noise”. The factors here have a splitting property: For

given factors, the components of (xt) are conditionally uncorrelated. The static factor
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model with idiosyncratic noise is the classical factor model, with a long history dating

back, as has been mentioned above, to the beginning of the twentieth century.

Commencing from given Σx, we see from (4), that in the static case the following

two identifiability problems arise:

1. For given Σx, what is the set of all pairs Σχ = ΛΣξΛ
′ and Σu, where Σχ is

positive semidefinite, singular and symmetric and Σu is positive semidefinite

and diagonal, such that (4) is satisfied? In this set r, i.e. the rank of Σχ,

may vary; we restrict ourselves to the subset, where r is minimal and from

now on the letter r is used for such a minimal r.

2. What is the set of all Λ and Σξ corresponding to Σχ? In most cases, Σξ = Ir is

assumed, so that Λ is unique up to right-multiplication by orthogonal matrices

(factor rotation).

As far as the first problem is concerned, the answer is, that, in general, Σχ and

Σu are not uniquely defined for given Σx, see [16], but they are generically unique if r

is smaller than or equal to the so called Lederman bound 2n+1
2 −

√

(2n+1)2

4 − n2 + n.

(The Lederman bound follows from counting the numbers of free parameters on both

sides of (4)).

For the case that r is smaller or equal to the Lederman bound, estimators of Λ and

Σu are obtained from maximizing the Gaussian log-likelihood function under suitable

normalization conditions on Λ guaranteeing uniqueness, and the ML-estimators can

be shown to be consistent under general assumptions, see [1]. In the quasi static

case this function is no longer the log-likelihood, but nevertheless yields consistent

estimators.

In contrast to the PCA model, here r, or, to be more precise, the minimal r in

all decompositions (4) is intrinsic, i.e. it is a property of Σx. Tests for determining

r have been proposed in [2]. Furthermore for the factor model with idiosyncratic

noise, the factors, in general, are not functions of the observations and thus have to

be approximated by (linear) functions of the observations.

For dynamic factor models with idiosyncratic noise, a rather complete structure

theory has been developed in [18]. The answer to the dynamic analogon of the first

identifiability question above is, that, for given spectral density fx, the spectra fχ =

Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ and fu are generically unique for r ≤ n −√
n.

As has been shown in [18], for dynamic factor models with idiosyncratic noise the

set of all spectral densities fx(λ) described by (3) for given r is a “thin” subset of the

set of all spectral densities fx(λ), if r < n −√
n holds.

For estimation and specification in the dynamic case we refer to [10], [15] and
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[23].

In this area there is still a substantial number of unsolved problems.

4. Generalized Factor Models. The classical assumption that fu (or in the

static case Σu) is diagonal turns out to be too restrictive for many applications, where

e.g. “local” dependency between the noise components may occur. Moreover, in a

number of applications, e.g. in cross-country business cycle analysis, asset pricing

[7] or in monitoring and forecasting economic activity by estimation of common fac-

tors (“diffusion indexes”) [20], the cross-sectional dimension may be high, possibly

exceeding sample size.

Both, the issue of weakening the assumption of uncorrelatedness of the idiosyn-

cratic components and the demand for modelling high dimensional time series has

lead to the development of generalized factor models, see for example [7], [11], [12],

[13], [9].

For the corresponding analysis the cross-sectional dimension n is not regarded

as fixed. Thus we consider a double sequence (xit|i ∈ N, t ∈ Z), where our general

assumptions hold true for every vector xn
t = (x1t, x2t, . . . , xnt)

′ with n ∈ N. Hence,

using an obvious notation, we have a sequence of factor models

(10) xn
t = Λn(z)ξt + un

t , t ∈ Z, n ∈ N,

where the noise vector un
t and the transfer functions Λn(z) are nested (in the

sense that e.g. the coefficient matrices Λm
j are the m × r top submatrices of Λn

j for

m ≤ n and for all j ∈ Z); the r-dimensional factors ξt do not depend on n.

In order to render explicit the dependence on n, the previously defined symbols

may be provided with a superscript n, e.g. fn
u denotes the spectral density of (un

t ).

Weak dependence between the noise components in un
t (substituting the classical

assumption of uncorrelatedness) is formalized by requiring the largest eigenvalue of

the spectral density fn
u , ωn

u,1 : [−π, π] → R say, to be uniformly bounded for all n ∈ N,

i.e.

Assumption 4.1. There exists a ω ∈ R, such that ωn
u,1(λ) ≤ ω for all λ ∈ [−π, π]

and for all n ∈ N.

On the other hand, the next assumption guarantees that every factor has a min-

imum amount of influence on infinitely many observations:

Assumption 4.2. The first r eigenvalues of fn
χ , ωn

χ,j say, j = 1, . . . , r diverge

a.e. in [−π, π] as n tends to infinity.

Equation (10) together with the assumptions imposed so far describe the gener-
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alized (dynamic) factor model (GFM and GDFM respectively).

A basic idea in dealing with GFMs is to obtain an increasing amount of informa-

tion from adding time series by averaging out the noise term. As a simple example

consider the following one-factor GFM with Λn = (1, 1, . . . , 1)′, ξt i.i.d. (i.e. indepen-

dent and identically distributed) and uit i.i.d. in i and t. Then, as 1
n

∑

i uit converges

to 0, the noise term is averaged-out.

This example is used to demonstrate the following general result: As shown in

[11], assumption 4.1 implies, that kn(z)un
t converges to 0 in mean square for every

sequence of transfer functions kn(z) =
∑∞

j=−∞ kn
j zj, kn

j ∈ R
1×n with ‖kn‖ → 0 for

n → ∞. Here we use the norm defined by ‖kn‖2 =
∫

kn(e−iλ)kn(e−iλ)∗dλ.

Forni and Lippi, see [11], provide necessary and sufficient conditions for the exis-

tence of an underlying GFM in terms of the observable spectral densities fn
x , n ∈ N:

The double sequence (xit|i ∈ N, t ∈ Z) can be represented by a sequence of GFMs,

if and only if,

1. the first r eigenvalues of fn
x , ωn

x,j say, j = 1, . . . , r , diverge a.e. in [−π, π] as

n tends to infinity,

2. the (r+1)-th eigenvalue of fn
x , ωn

x,r+1 say, is uniformly bounded for λ ∈ [−π, π]

a.e. and for all n ∈ N .

As will be discussed below (admittedly in a sloppy manner), the sequence of

PCA-models for (xit|i ∈ N, t ∈ Z) will converge to the sequence of corresponding

GDFMs, and the spectral densities of χn
t and un

t of the GDFM are “asymptotically

(for n → ∞) identifiable” by the spectral densities corresponding to dynamic PCA

obtained from the canonical representation of fn
x ,

(11) fn
x (λ) = On

1 (e−iλ)Ωn
1 (λ)On

1 (e−iλ)∗ + On
2 (e−iλ)Ωn

2 (λ)On
2 (e−iλ)∗,

where Ωn
1 , Ωn

2 , On
1 and On

2 are defined as in (8).

As shown in Forni et al. [12] the sequence of PCA-models for (xn
t ), n ∈ N,

approximates the corresponding sequence of GDFMs in the following sense:

• The Hilbert space spanned by the first r dynamic principal components of

(xn
t ), i.e. the space spanned by the scalar components of On

1 (z)∗xn
t , t ∈ Z, in

the Hilbert space of all square-integrable (scalar) random variables, converges

to the space spanned by the scalar components of (ξt), where convergence of

spaces is understood in the sense that the perpendiculars of a projection from

one space to the other converge to 0 in mean square.

• Every component of the latent variables (or the noise resp.) from the PCA-

model converges to the corresponding generalized factor model variable as n



160 MANFRED DEISTLER AND CHRISTIANE ZINNER

tends to ∞. (Note that here convergence of one-dimensional random variables

is in the sense of mean squares convergence.) In other words, let χn
it =

on
1,i(z)On

1 (z)∗xn
t denote the projection of xn

it onto the space spanned by the

one-dimensional components of On
1 (z)∗xn

t , t ∈ Z, i.e. the i-th element of the

latent variable of the corresponding PCA-model at time t, then

(12) lim
n→∞

χn
it = χit, for all i ∈ N and for all t ∈ Z,

where χit denotes the i-th element of Λn(z)ξt (for n ≥ i), hence the corre-

sponding “true” latent variable.

Thus, the dynamic PCA-model and the generalized dynamic factor model are asymp-

totically equivalent, in the above sense.

Concerning identifiability (which sloppy speaking relates to an “infinite sample

size T ” ), the results from dynamic PCA carry over, i.e. asymptotically, as n tends to

infinity, the latent variables as well as the idiosyncratic components are identifiable,

whereas even for n → ∞ the transfer functions Λn(z) and the factors ξt are only

identifiable up to regular dynamic linear transformations
∑∞

j=−∞ Tjz
j . If the factors

are assumed to be white noise with Eξtξ
′
t = Ir, which is no restriction on fχ, since

our assumptions always allow this transformation, the factors are identifiable up to

“static rotations”, i.e. constant orthogonal matrices.

Let us continue our simple example from above. If we assume that var(ξt) = 1

and Σn
u = In, then Σn

x = 1n+In, where 1n denotes the n×n matrix consisting of ones.

The eigenvalue decomposition of Σn
x yields ωn

x,1 = n + 1 as the largest eigenvalue and

the corresponding eigenvector is On
1 = 1√

n
(1, 1, . . . , 1)′, so that the variance matrix of

the latent variables of the PCA model equals On
1 (n+1)On′

1 , whose elements converge

to the elements of the corresponding GFM-matrix, i.e. Σn
χ = On

1 nOn′

1 , as n −→ ∞.

For estimation, the dynamic PCA estimators corresponding to (8) and (9), as

discussed in Section 2, may be employed, thus e.g. χ̂n
t =

[

Ôn
1 (z)Ôn

1 (z)∗
]

t
xn

t , where

Ôn
1 (e−iλ) denotes the matrix consisting of the first r eigenvectors of a consistent esti-

mator of fn
x (λ), f̂n

x (λ) say, and the subscript t indicates that the filter Ôn
1 (z)Ôn

1 (z)∗,

that is in general two-sided and of infinite order, has to be truncated at lag t− 1 and

lead T − t, as for t ≤ 0 and t > T , xn
t is not available. For fixed n and T → ∞

a consistent estimator of fn
x yields consistent estimators of the spectral densities f̌n

χ

and f̌n
u respectively of the latent variables and the noise resp. of the corresponding

PCA-model, since eigenvalues and suitably normalized eigenvectors are continuous

functions of the original frequency-dependent matrices. As a consequence of this con-

sistency result the estimators of the latent variables in the PCA model converge to the

true values of the PCA model and the same holds true for the noise term. However,
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as a consequence of the truncation of Ôn
1 (z)Ôn

1 (z)∗ this convergence of the estimators

of χn
t and un

t , as T → ∞, can only be granted for a “central” part of the sample,

whereas for fixed t the estimators may never be consistent. An analogous statement

holds for the latent variables and the noise respectively of the GFM as n and T tend

to ∞.

So far the number of factors r was considered fixed and known, whereas in practice

it has to be determined from the data. The above discussion indicates that the

eigenvalues of f̂n
x could be used for determining the number of factors and Forni et

al. in [12] propose a heuristic rule, but indeed, no formal testing procedure has been

developed yet. For the static case an information criterion for estimating the number

of factors has been proposed in [3].

While the two-sidedness of the filters occurring in dynamic PCA already causes

problems for estimation at the edges of the observations, the fact that the filters are

in general two-sided and thus non causal may yield “infeasible naive” forecasts for

χn
t+h, h > 0, based on χn

s , s ≤ t, since in general the latent PCA-variable χn
t may

depend on xn
s , s > t. One way to overcome this difficulty, see([13]), is to assume that

Λn(z) is polynomial of degree p, i.e.

Assumption 4.3. Λn(z) is of the form Λn(z) =
∑p

j=0 Λn
j zj,

and to restrict the factors to stationary AR-processes of finite order s ≤ p + 1:

Assumption 4.4. (ξt) is of the form ξt = A(z)−1εt, A(z) = I −A1z− . . .−Asz
s

with Aj ∈ R
r×r, detA(z) 6= 0 for |z| ≤ 1, s ≤ p + 1 and the innovations εt are

r-dimensional white noise with Eεtε
′
t = Σε > 0 (and are uncorrelated with un

t at any

leads and lags).

The model then can be written in quasi static form, on the cost of higher dimen-

sional factors, as:

(13) xn
t = Λ̄nFt + un

t = χn
t + un

t , t ∈ Z, n ∈ N,

where Ft = (ξ′t, . . . , ξ
′
t−p)

′ is the q = r(p+1)-dimensional vector of stacked factors and

Λ̄n = (Λn
0 , . . . , Λn

p ) is the (n × q)-dimensional static factor loading matrix. Note that

(xn
t ), (χn

t ), (un
t ) and their variances and spectra as well as Λ̄n still depend on n, but

for sake of legibility we will drop the superscript from now. Under the assumptions

imposed, Ft and ut remain uncorrelated at any leads and lags and thus fx is of the

form

(14) fx(λ) = Λ̄fF (λ)Λ̄∗ + fu(λ).

For estimation, Stock and Watson [20] propose the quasi-static PCA procedure

with q factors and they prove consistency for the factor estimates (i.e. the first q
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sample principal components of xt) up to premultiplication with a nonsingular matrix

as n and T tend to infinity under general assumptions. Sloppy speaking, the space

spanned by the true GFM-factors can be consistently estimated. As it is easily seen,

this is just a special case of the dynamic results discussed above.

An alternative two-stage “generalized PCA” estimation method has been pro-

posed by Forni et al. in [13]. It differs from classical PCA in two respects: First in

the estimation of the covariances of the common components of the PCA and second

in the determination of the weighting scheme. While classical PCA is based on the

sample covariance Σ̂x of (xt), the approach in [13] commences from the estimated

spectral density f̂x decomposed according to dynamic PCA, see (11). Then the co-

variance matrices Σχ and Σu of the common component and the noise respectively

are estimated as

(15) Σ̂χ =

∫ −π

π

f̂χ(λ)dλ and Σ̂u =

∫ −π

π

f̂u(λ)dλ,

or to be more precise, since f̂x is defined on a finite grid of frequencies, by the cor-

responding sums. In the second step, the factors are estimated as C′xt, where the

(n× q)-dimensional weighting matrix C consists of the first q generalized eigenvectors

of the matrices (Σ̂χ, Σ̂u), i.e. Σ̂χC = Σ̂uCΩ1, where Ω1 denotes the diagonal matrix

containing the q largest generalized eigenvalues. C is thus the matrix that maximizes

tr (C′Σ̂χC)

s.t. C′Σ̂uC = Iq,(16)

(whereas in static PCA the corresponding weights C maximize tr (C′Σ̂xC), s.t. C′C =

Iq). The matrix Λ is then estimated by projecting xt onto C′xt, i.e.

Λ̂ = Σ̂xC(C′Σ̂xC)−1.

The common component estimator χ̂t defined this way can be shown to be consistent

(for n and T tending to infinity). The argument for this procedure is that less weight is

given to variables with higher noise variance and lower common component variance

respectively and vice versa, thus the common-to-idiosyncratic variance ratio in the

resulting latent variables is maximized, which could possibly improve efficiency upon

static PCA.

Boivin and Ng [4] propose a third estimation method called “weighted PCA”

which is related to classical PCA in the same way as generalized least squares (GLS)

is related to ordinary least squares (OLS) in the regression context. Remember,

that, if the regression residuals are non-spherical, but the structure of the variance

matrix is known, GLS weights the residuals proportional to the inverse of the square
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root of their variance matrix and yields (linearly) efficient estimators. Assume for a

moment that the noise variance Σu were known, then the same principle could be

applied to PCA by transforming the least squares problem (5), i.e. min Eu′
tut, into

the generalized least squares problem

(17) min
Λ,C

Eu′
tΣ

−1
u ut = min

Λ,C
E

(

xt − ΛCxt

)′
Σ−1

u

(

xt − ΛCxt

)

,

which is solved for

(18) Λ = Σ1/2
u O1 and C = O′

1Σ
−1/2
u ,

where now O1 denotes the first q eigenvectors of Σ
−1/2
u ΣxΣ

−1/2
u . For estimation, Σx

is replaced by the corresponding sample covariance. Additionally an estimate of Σu is

needed. Since the residual matrix of the unweighted PCA-model is singular, it cannot

be used. A feasible alternative is the estimator resulting from dynamic PCA, i.e.

(19) Σ̂u =

∫ −π

π

f̂u(λ)dλ,

which in many cases, but not always, will be nonsingular. An alternative estimator

is proposed in [4]. Again the factor space is consistently estimated as n and T tend

to infinity.

Whether the estimation methods described above can improve upon conventional

static PCA, is still a partially open question. At least from a theoretical point of view,

the question of (asymptotic) efficiency gain is not yet answered. In [13] and [4] Monte

Carlo experiments are described showing that the last two estimators described above

are better than static PCA in certain cases, but the results are highly dependent on

the properties of the underlying stochastic processes. On the other hand the results

of an empirical study in the context of macroeconomic forecasting [21] do not show

much difference.

Concerning forecasting in the quasi-static model, at least two different approaches

have been proposed. First, as suggested by Forni et al. in [13], prediction can be

restricted to the common component. In this case the variable to be forecast, xi,t+h

say, is projected onto the estimate of χi,t or equivalently Ft. Second, as proposed by

Stock and Watson in [21], the information contained in the idiosyncratic component

(ui,t)t∈Z can be additionally taken into account, in which case ui,t is supposed to

follow the AR(S)-process bi(z)ui,t = νi,t with νi,t being white noise. Let us consider

one-step ahead forecasts. Under these assumptions the factor model equation for

xi,t+1, i.e.

(20) xi,t+1 = λiFt+1 + ui,t+1,
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where λi denotes the i-th row of Λ, can be rewritten as

(21) xi,t+1 = bi(z)λiFt+1 + γi(z)xi,t + νi,t+1,

where γi(z) = (1− bi(z))z−1. Thus the one-step ahead forecast, x̂i,t,1 say, is given by

(22) x̂i,t,1 = βi(z)Ft + γi(z)xi,t,

where βi(z)Ft is the projection of bi(z)λiFt+1 onto the space spanned by present and

past values of the one-dimensional components of (Ft). The forecast is thus computed

via a “factor augmented AR model”.

So far we have discussed several methods to estimate the factor space, but we

were not concerned with the identification of either the factors Ft or the factor loading

matrix Λ. Note, that although e.g. the first q static principal components (asymp-

totically for n −→ ∞) form a basis of the factor space and thus their estimates can

be used as factor estimates as long as one is interested in projections onto that space

e.g. for estimating or forecasting the latent variables. This choice is arbitrary since

any nonsingular linear transformation of those estimates span the same space. We

are now concerned with the identification of a linear transformation that allows for

a meaningful “structural” interpretation of the resulting factors and factor loading

matrix, see Forni et al. [14].

Having estimated the dynamic model in its static form (13), to identify the r-

dimensional dynamic factors ξt (or to be more precise the space spanned by those),

it is of particular interest to reveal the structure of Ft, i.e. the fact that the stacked

factors Ft follow a structured AR(1)-process,

(23) Ft = DFt−1 + et,

where

D =













A1 A2 . . . As 0

(r × r) . . . (r × r) (r × (r(p + 1 − s)))

I 0

(pr × pr) (pr × r)













and et = (ε′t, 0, . . . , 0)′ is orthogonal to Ft−1.

In general this property will not be kept by any of the factor estimates discussed

above. Let now denote by Gt the population analogon of a factor estimate according

to one of the methods discussed above (e.g. the first q static principal components
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for infinite cross-section if the population variance Σx were known), then Gt = HFt

is satisfied with H nonsingular. As a consequence Gt has the AR(1)-representation

(24) Gt = HDH−1Gt−1 + Het.

We observe that HDH−1 = E(GtG
′
t−1)Σ

−1
G and the residuals Het can be written as

Het = Hrεt = (HrP
−1)Pεt = O1Ω

1/2
1 Pεt, where Hr denotes the first r columns of

H , P is a regular r×r matrix, Ω1 and O1 result from a PCA for the noise term on the

r.h.s. in (24), thus Ω1 is the diagonal matrix containing the r largest (i.e. non-zero)

eigenvalues of HrΣεH
′
r and O1 is the matrix of corresponding eigenvectors. Hence we

have the solution

(25) Gt = (I − HDH−1z)−1O1Ω
1/2
1 Pεt.

Recalling (13), we have th at, χt = Λ(z)ξt = ΛFt = Λ̃Gt with Λ̃ = ΛH−1 =

E(xtG
′
t)Σ

−1
G , and thus χt can be written as

(26) χt = Λ̃(I − HDH−1z)−1O1Ω
1/2
1 Pεt.

Estimators for the transfer function Λ(z)A(z)−1 and the r-dimensional dynamic

factor innovations εt are derived in an analogous way by replacing Gt by an estimator

discussed above and the population second moments by their sample counterparts.

The so defined estimators can be shown to be consistent (as n and T −→ ∞), see

[14].

As a consequence the transfer function Λ(z)A(z)−1 and the r-dimensional dy-

namic factor innovations εt are identifiable up to static linear regular transforma-

tions. This last identification problem may be solved by choosing P in a way such

that Λ(z)A(z)−1P has a meaningful interpretation or by imposing zero restrictions

on e.g. Λ(0)A(0)−1P .
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