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ON ASYMPTOTIC STABILIZABILITY OF DISCRETE-TIME

LINEAR SYSTEMS WITH DELAYED INPUT∗

ZONGLI LIN†

Abstract. This paper examines the asymptotic stabilizability of discrete-time linear systems

with delayed input. By explicit construction of stabilizing feedback laws, it is shown that a stabiliz-

able and detectable linear system with an arbitrarily large delay in the input can be asymptotically

stabilized by either linear state or output feedback as long as the open loop system is not exponen-

tially unstable (i.e., all the open loop poles are on or inside the unit circle.) It is further shown that

such a system, when subject to actuator saturation, is semi-globally asymptotically stabilizable by

linear state or output feedback.

Key words: Time delay, linear systems, stabilization, low gain feedback.

1. Introduction. This paper examines the asymptotic stabilizability of a dis-

crete-time linear system with delay in the input,

(1)

{

x(k + 1) = Ax(k) +Bu(k − r), x(s) = φ(s), s ∈ [−r, 0],

y(k) = Cx(k),

where x ∈ Rn is the state, u ∈ Rm is the control input of either state feedback or

output feedback type, y ∈ Rp is the measurement output, and r ≥ 0 an integer that

represents time delay in the control input. It is also assumed that the pair (A,B) is

stabilizable and the pair (A,C) is detectable.

Control problems for linear time delay systems in the form of (1) or in a variety

of other forms have been a subject of extensive research (see, for example, [1, 2, 3,

4, 5, 6, 9, 10, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26] and the references there in).

Various stability and stabilizability conditions were identified and stabilizing feedback

laws constructed.

Our interest in discrete-time systems of the form (1) has been motivated by several

recent results on asymptotic stabilization of their continuous-time counterparts,

(2)

{

ẋ(t) = Ax(t) +Bu(t− τ), x(θ) = φ(θ), θ ∈ [−τ, 0],

y(t) = Cx(t),

where τ ≥ 0 is the delay. In particular, two special classes of (2) were recently

revisited in [13, 8] and [14], respectively. Both [13] and [8] showed that, in the presence

∗This work was supported in part by National Natural Science Foundation of China under the

Outstanding Young Investigator Program (Class B: Overseas Collaboration).
†Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia,

P.O. Box 400743, Charlottesville, VA 22904-4743. E-mail: zl5y@virginia.edu

227



228 ZONGLI LIN

of input delay, an oscillator system, which has a pair of open loop poles at ±j, is

globally asymptotically stabilizable by bounded state feedback laws. In [14], the

authors established global asymptotic stablizability by bounded state feedback of a

chain of integrators with a delay in the input.

While both the oscillator and the chain of integrator systems are special classes

of (2) and both have all poles on the imaginary axis, the feedback laws that were

constructed for stabilizing them are very different and the proof of the closed-loop

stability involves different techniques. The feedback laws in [13] and [8] both involve

a saturation function and both require the explicit knowledge of the amount of the

delay. The closed-loop stability in [13] was established through that of a system under

distributed control, while [8] resorted to analysis of trajectories. The feedback law in

[14] does not require explicit knowledge of the amount of delay but involves a set of

nested saturation functions and is thus nonlinear. Recently, the results of [14] were

extended to open loop systems with all poles located on the closed left-half plane [25],

where Lp stabilization is also considered.

More recently, a general result on stabilizability of the system (2) was established

in [12]. By explicit construction of stabilizing feedback laws, it was shown that system

(2), with an arbitrarily large finite delay, is asymptotically stabilizable by either linear

state or output feedback as long as the open loop system is not exponentially unstable

(i.e., all the open loop poles are in the closed left-half plane). It is further shown that

such systems, when subject to actuator saturation, are semi-globally asymptotically

stabilizable by either linear state or output feedback.

This recent literature in a way indicates the complexity in the stabilization of sys-

tems with delay in the input such as those in the form of (2) and (1). The objective of

this paper is to establish parallel results of [12] in the discrete-time setting. That is,

the system (1), with an arbitrarily large finite delay, is asymptotically stabilized by

either linear state or output feedback as long as the open loop system is not exponen-

tially unstable (i.e., all the open loop poles are inside or on the unit circle), and such a

system, when subject to actuator saturation, is semi-globally asymptotically stabiliz-

able by either linear state or output feedback. Key to establishing these discrete-time

results are the low gain feedback design technology [17] and the discrete-time version

of the Razumikhin Theorem for delay difference equations [7, 27]. Even though these

results are parallel to their continuous-time counterparts [12], their developments are

more involved. For example, in the countinuous-time setting, the subsystems corre-

sponding open loop poles at s = 0, on the slow time scale, are independent of the low

gain parameter ε. On the other hand, in the discrete-time setting, the subsystems

corresponding to the open loop poles at z = 1 or z = −1, on the slow time scale,

contain terms that are in the order of ε. These ε order perturbation terms lead to
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delicate analysis as the convergence rate of the closed-loop system under low gain

feedback is also only the order of ε.

Simple examples show that the above mentioned results would not be true if the

open loop system is exponentially unstable and thus are not conservative. For the

continuous-time counterparts [12], we give some intuitive arguments as to why the

knowledge of the delay is needed in the feedback law when there are non-zero open

loop system poles at the imaginary axis. Here in the discrete-time setting, we will be

able to come up with simple systems with open loop poles located on the unit circle

but at z 6= 1 for which no delay independent linear feedback can achieve asymptotic

stabilization.

The remainder of this paper is organized as follows. Section 2 contains some

preliminaries that we need to establish our main results. Sections 3 contains state

feedback results. Section 4 contains output feedback results. Section 5 deals with the

situation when the inputs are subject to both delay and saturation. Section 6 includes

some examples to demonstrate the results of the paper. Section 7 draws a conclusion

to the paper.

Throughout the paper, we use rather standard notation. R denotes the set of

real numbers, Rn denotes the set of n-dimensional real vectors, Rn×m denotes the

set of n×m real matrices, and In denotes an n× n identity matrix.

2. Preliminaries.

2.1. Low Gain Feedback. Consider the following linear system,

(3) x(k + 1) = Ax(k) +Bu(k), x ∈ Rn, u ∈ R,

where

(4) A =



















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1



















, B =



















0

0
...

0

1



















.

Assume that all eigenvalues of A are on the unit circle. Let F (ε) : (0, 1] → R1×n be

the unique state feedback gain such that

(5) λ(A +BF (ε)) = (1 − ε)λ(A), ε ∈ (0, 1].

Then, we have the following lemmas [17] on the properties of the resulting closed-loop

system. Explicit construction of all the matrices involved in these lemmas can be

found in [17].
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Lemma 1. Consider the system (3) and let F be as given by (5). Then, there

exists a nonsingular transformation matrix Q(ε) ∈ Rn×n such that

(6) Q−1(ε)(A+BF (ε))Q(ε) = J(ε) := blkdiag {J−1(ε), J+1(ε), J1(ε), · · · , Jl(ε)} ,

where

(7) J−1(ε) =















−(1 − ε) 1

. . .
. . .

−(1 − ε) 1

−(1 − ε)















n
−1

×n
−1

,

(8) J+1(ε) =















1 − ε 1

. . .
. . .

1 − ε 1

1 − ε















n
+1

×n
+1

,

and for each i = 1 to l,

(9) Ji(ε) =















J⋆
i (ε) I2

. . .
. . .

J⋆
i (ε) I2

J⋆
i (ε)















2ni×2ni

, J⋆
i (ε) = (1 − ε)

[

αi βi

−βi αi

]

,

with α2
i + β2

i = 1 for all i = 1 to l and αi 6= αj for i 6= j.

Lemma 2. Consider the system (3) and let F be as given by (5). Let J(ε) be as

given in Lemma 1. Let

(10) S(ε) = blkdiag{S−1(ε), S+1(ε), S1(ε), S2(ε), · · · , Sl(ε)},

where S−1(ε) = diag{εn
−1−1, εn

−1−2, · · · , ε, 1}, S+1(ε) = diag{εn+1−1, εn+1−2, · · · , ε,
1}, and for each i = 1 to l, Si(ε) = blkdiag {εni−1I2, ε

ni−2I2, · · · , εI2, I2}.
Then,

1.

(11) S(ε)J(ε)S−1(ε) = J̃(ε) := blkdiag
{

J̃−1(ε), J̃+1(ε), J̃1(ε), · · · , J̃l(ε)
}

,

where

(12) J̃−1(ε) =















−(1 − ε) ε

. . .
. . .

−(1 − ε) ε

−(1 − ε)















n
−1×n

−1

,
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(13) J̃+1(ε) =















(1 − ε) ε

. . .
. . .

(1 − ε) ε

(1 − ε)















n+1×n+1

,

and for each i = 1 to l,

(14)

J̃i(ε) =















J⋆
i (ε) εI2

. . .
. . .

J⋆
i (ε) εI2

J⋆
i (ε)















2ni×2ni

, J⋆
i (ε) = (1−ε)

[

αi βi

−βi αi

]

,

with βi > 0 for all i = 1 to l and βi 6= βj for i 6= j;

2. There exists an ε∗ ∈ (0, 1] such that the unique positive definite solution P̃ (ε)

to the Lyapunov equation

(15) J̃T(ε)P̃ J̃(ε) − P̃ = −εI

is bounded over ε ∈ (0, ε∗], i.e., there exist positive definite matrices P̃1 and

P̃2 such that

(16) P̃1 ≤ P̃ (ε) ≤ P̃2, ∀ε ∈ (0, ε∗].

Lemma 3. Consider the system (3) and let F be as given by (5). Let Q(ε), l,

and ni for i = 0 to l, be as defined in Lemma 1. Let the scaling matrix S(ε) be as

defined in Lemma 2. Then, there exist γ, α, β, ϑ > 0, all independent of ε, such that,

for all ε ∈ (0, 1],

(17) |F (ε)| ≤ γε,

(18) |F (ε)Q(ε)S−1(ε)| ≤ αε,

(19) |F (ε)AQ(ε)S−1(ε)| ≤ βε,

(20) |Q(ε)| ≤ ϑ, |Q−1(ε)| ≤ ϑ.

2.2. The Razumikhin Theorem. Consider the time delay system,

(21)

{

x(k + 1) = f(x(k), xk), k ≥ 0,

x0(s) = ψ(s), s ∈ [−r, 0].
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Let

Cn,r = {ψ : {−r,−r + 1, · · · ,−1, 0} 7−→ Rn} ,

and for each ψ ∈ Cn,r, we define its norm as

‖ψ‖ = max
s∈Ir

|ψ(s)|,

where | · | is the Euclidean norm on Rn and Ir denotes the set of integers {−r,−r+

1, · · · ,−1, 0}. We also use xk ∈ Cn,r to denote the restriction of x(k) to the interval

[k − r, k] translated to [−r, 0], that is,

xk(s) = x(k + s), s ∈ [−r, 0].

Also denote the solution of the difference equation (21) with the initial condition

x0 ∈ Cn,r as x(k, x0).

Definition 1. The zero solution x(k) ≡ 0 of (21) is said to be asymptotically

stable if

1. for every δ > 0 there exists an ǫ = ǫ(δ) such that, for any ψ ∈ B(0, ǫ) :=

{ψ ∈ Cn,r, ‖ψ‖ ≤ ǫ}, the solution x(k, ψ) of (21) satisfies xk ∈ B(0, δ) for all

k ≥ 0;

2. for every η > 0 there exist a K(η) and a v0 > 0 independent of η such that

ψ ∈ B(0, v0) implies that ||xk|| < η, ∀k ≥ K(η).

If the system (21) is asymptotically and item 2 holds for every ψ ∈ Cn,k, then it is

globally asymptotically stable.

Clearly, if the system (21) is a linear system, then, asymptotic stability implies

global asymptotic stability. The Razumikhin Theorem [7, 27] gives conditions under

which x(k) ≡ 0 is asymptotically stable. Actually, more information about the invari-

ant set and the regional stability is contained in the proof of this theorem in [7]. This

additional information is incorporated in the following statement of the theorem.

Lemma 4 (Razumikhin Stability Theorem). Consider the delay difference equa-

tion (21). Suppose that u, v, w and p ∈ R+ 7−→ R+ are scalar, continuous and

strictly increasing functions, with u(0) = v(0) = 0 and p(t) > t for t > 0. If there is

a continuous function V : Rn 7−→ R and a positive number ρ, such that for all

xk ∈MV (ρ) := {ψ ∈ Cn,r : V (ψ(s)) ≤ ρ, ∀ s ∈ [−r, 0]} ,

the following conditions hold,

1. u(|x|) ≤ V (x) ≤ v(|x|),
2. ∆V (x(k)) = V (x(k+1))−V (x(k)) ≤ −w(|x(k)|), if V (x(k+s)) < p(V (x(k))),

∀s ∈ [−r, 0],
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then the solution x(k) ≡ 0 of the equation (21) is asymptotically stable. Moreover,

the set MV (ρ) is an invariant set inside the domain of attraction. If items 1 and 2

hold for all x ∈ Rn and u(t) → ∞ as t → ∞, then, the solution x(k) ≡ 0 is globally

asymptotically stable.

3. Stabilization by Linear State Feedback. For the system (1) with all

eigenvalues of A on or inside the unit circle, we construct two families of linear state

feedback laws as follows.

State Feedback Design:

Step 1. Find nonsingular transformation matrices TS and TI such that the pair

(A,B) is transformed into the following block diagonal control canonical form,

T−1
S
ATS =



















A1 0 · · · 0 0

0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Al 0

0 0 · · · 0 A0



















,(22)

T−1
S
BTI =



















B1 B12 · · · B1l ∗
0 B2 · · · B2l ∗
...

...
. . .

...
...

0 0 · · · Bl ∗
B01 B02 · · · B0l ∗



















,(23)

where A0 contains all the eigenvalues of A that are strictly inside the unit

circle, for each i = 1 to l, all eigenvalues of Ai are on the unit circle and hence

(Ai, Bi) is controllable and is given by,

Ai =



















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−aini
−ai(ni−1) −ai(ni−2) · · · −ai1



















, Bi =



















0

0
...

0

1



















,

and finally, ∗’s represent submatrices of less interest.

We note that the existence of the above canonical form was shown in [21].

The software realization can be found in [11].

Step 2. For each (Ai, Bi), let Fi(ε) ∈ R1×ni be the state feedback gain such that

(24) λ(Ai +BiFi(ε)) = (1 − ε)λ(Ai), ε ∈ (0, 1].

Note that Fi(ε) is unique.
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Step 3. Construct two families of low gain state feedback laws as

(25) u(k) = F (ε)Arx(k),

and

(26) u(k) = F (ε)x(k),

where the low gain matrix F (ε) is given by

(27) F (ε) = TI

























F1(ε) 0 · · · 0 0 0

0 F2(ε) · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · Fl−1(ε) 0 0

0 0 · · · 0 Fl(ε) 0

0 0 · · · 0 0 0

























T−1
S
.

The first class of low gain feedback laws (25) uses the knowledge of the time delay

r, while the second family (26) does not require the knowledge of r. The theorem

below establishes that a linear state feedback law from (25) asymptotically stabilizes

the system (1) as long as all eigenvalues of A are on or inside the unit circle.

Theorem 1. Consider the closed-loop system comprising of the system (1) and

the linear state feedback law (25). Let all eigenvalues of A be on or inside the unit

circle. Then, for any given arbitrarily large r ≥ 0, there exists an ε∗ > 0, such that,

for each ε ∈ (0, ε∗], the closed-loop system is asymptotically stable.

Proof. Without loss of generality, assume that the pair (A,B) are already in the

form of (22)-(23). Under the state feedback law (25), the closed-loop system is given

by

(28) x(k + 1) = Ax(k) +BF (ε)Arx(k − r),

from which we have

(29) Arx(k − r) = x(k) −
r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r).

Substitution of (29) in (28) results in

(30) x(k + 1) = (A+BF (ε))x(k) −BF (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r).

Partitioning the state x according to the structure of (22)-(23),

x =
[

xT

1 xT

2 · · · xT

l xT

0

]T

, xi ∈ Rni , i ∈ [1, l],
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we rewrite the state equation (30) as follows

(31)























































































































































x1(k + 1) = (A1 +B1F1(ε))x1(k) +

l
∑

j=2

B1jFj(ε)xj(k)

−BR1F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r),

x2(k + 1) = (A2 +B2F2(ε))x2(k) +

l
∑

j=3

B2jFj(ε)xj(k)

−BR2F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r),

...

xl(k + 1) = (Al +BlFl(ε))xl(k)

−BRlF (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r),

x0(k + 1) = A0x0(k) +
l

∑

j=1

B0jFj(ε)xj(k)

−BR0F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r),

where for each i = 1 to l, BRi is the ith row of the right hand side of (23) and BR0 is

the last row.

Now for each i = 1 to l, let Qi(ε), Si(ε), J̃i(ε), P̃i, γi, αi, βi, and ϑi be the matrices

Q(ε), S(ε), J̃(ε) and P̃ and the constants γ, α, β and ϑ as defined in Lemmas 1-3,

but for the triple (Ai, Bi, Fi(ε)). Define a state transformation as,

(32) x̃ =
[

x̃T

1 , x̃
T

2 , · · · , x̃T

l , x̃
T

0

]T

,

where x̃0 = x0, and, for each i = 1 to l, x̃i = Si(ε)Q
−1
i (ε)xi.

It follows from Lemmas 1 and 2 that, under this state transformation, the state
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equation (31) can be written as

(33)






















































































































































x̃1(k + 1) = J̃1(ε)x̃1(k) +

l
∑

j=2

S1(ε)Q
−1
1 (ε)B1jFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)

− S1(ε)Q
−1
1 (ε)BR1F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r),

x̃2(k + 1) = J̃2(ε)x̃2(k) +

l
∑

j=3

S2(ε)Q2(ε)B2jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

− S2(ε)Q
−1
2 (ε)BR2F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r),

...

x̃l(k + 1) = J̃l(ε)x̃l(k)

− Sl(ε)Q
−1
l (ε)BRlF (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r),

x̃0(k + 1) = A0x̃0(k) +

l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

− BR0F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r),

where

Q(ε) = blkdiag {Q1(ε), Q2(ε), · · · , Ql(ε), I} ,

and

S(ε) = blkdiag {S1(ε), S2(ε), · · · , Sl(ε), I} .

Let us choose a Lyapunov function

(34) V (x̃) =
l

∑

i=1

κix̃T

i P̃i(ε)x̃i + x̃T

0 P̃0x̃0 := x̃TP̃ (ε)x̃,

where P̃0 > 0 is such that

AT

0 P̃0A0 − P̃0 = −I,

κ > 0 is a constant whose value is to be determined later, and

(35) P̃ (ε) = blkdiag
{

κP̃1(ε), κ
2P̃2(ε), · · · , κlP̃l(ε), P̃0

}

.

The existence of such a P̃0 is due to the fact that A0 is asymptotically stable. The

difference of V along the trajectories of the closed-loop system (33) can be evaluated
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as follows,

∆V (x̃(k)) =

l
∑

i=1






κix̃T

i (k)
(

J̃T

i (ε)P̃i(ε)J̃i(ε) − P̃i

)

x̃i(k)

+2

l
∑

j=i+1

κix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)

−2κi





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×Si(ε)Q
−1
i (ε)BRiF (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

+ki





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)











−x̃T

0 (k)
(

AT

0 P̃0A0 − P̃0

)

x̃0(k) + 2

l
∑

j=1

x̃T

0 (k)AT

0 P̃0B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

+





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





T

P0





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





−2

[

l
∑

i=1

κix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + x̃T

0A
T

0 P̃0BR0

]

F (ε)

×
r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

+

[

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]T

×
[

l
∑

i=1

κiFT(ε)BT

Ri(Q
−1
i )TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRiF (ε)

+FT(ε)BT

R0P̃0BR0F (ε)

]

×
[

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]

.(36)

Recall that J̃T(ε)P̃i(ε)J̃i(ε) − P̃i = −εI and AT

0 P̃0A0 − P̃0 = −I. Also, it follows

from Lemma 3 that the matrices defining the remaining (x̃i(k), x̃j(k)) terms, other

than the term defined by AT

0 P̃0A0 − P̃0, are all of order ε or order ε2. It is then
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straightforward to verify that there exist a constant κ > 0 and an ε∗1 ∈ (0, 1] such

that,

∆V (x̃(k)) ≤ −ε
2
x̃T(k)x̃(k)

−2






x̃T

0A
T

0 P̃0BR0 +

l
∑

i=1

κi



x̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi

+





l
∑

j=i+1

Si(ε)Q
−1(ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

× P̃i(ε)Si(ε)Q
−1
i (ε)BRi










F (ε)

×
r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

+

[

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]T

×
[

l
∑

i=1

κiFT(ε)BT

Ri(Q
−1
i (ε))TST

i (ε)Si(ε)Q
−1
i (ε)BRiF (ε)

+ FT(ε)BT

R0BR0F (ε)

]

×
[

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]

, ε ∈ (0, ε∗1].(37)

Recalling the special structure of J̃i(ε) and Lemma 3, we have

∣

∣S(ε)Q−1(ε)AQ(ε)S−1(ε)
∣

∣ =
l

∑

i=1

∣

∣Si(ε)Q
−1
i (ε)AiQi(ε)S

−1
i (ε)

∣

∣ + |A0|

=

l
∑

i=1

∣

∣Si(ε)Q
−1
i (ε)(Ai +BiFi(ε))Q(ε)S−1

i (ε)

−Si(ε)Q
−1
i (ε)BiFi(ε)Qi(ε)S

−1
i (ε)

∣

∣ + |A0|

≤
l

∑

i=1

(∣

∣

∣
J̃i(ε)

∣

∣

∣
+ εαiϑi|Bi|

)

+ |A0|

≤ δ, ε ∈ (0, ε∗1].(38)

Hence, we have

∣

∣S(ε)Q−1(ε)AiQ(ε)S−1(ε)
∣

∣

=
∣

∣S(ε)Q−1(ε)AQ(ε)S−1(ε)S(ε)Q−1(ε)A · · ·AQ(ε)S−1(ε)
∣

∣ ≤ δi,(39)
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and,

∣

∣F (ε)ArQ(ε)S−1(ε)
∣

∣ =
∣

∣F (ε)Q(ε)S−1(ε)S(ε)Q−1(ε)ArQ(ε)S−1(ε)
∣

∣

≤
∣

∣F (ε)Q(ε)S−1(ε)
∣

∣

∣

∣S(ε)Q−1(ε)ArQ(ε)S−1(ε)
∣

∣

≤
[

l
∑

i=1

∣

∣Fi(ε)Qi(ε)S
−1
i (ε)

∣

∣

]

δr

≤ ε

[

l
∑

i=1

αi

]

δr.(40)

Consequently, the inequality (37) can be continued as follows,

∆V (x̃(k)) ≤ −ε
2
λ−1

max(P̃ (ε))V (x̃(k))

+ε2̟1(r)V
1
2 (x̃(k))

r−1
∑

s=0

|A|r−s−1 V
1
2 (x̃(k + s− 2r)),

+ε4̟2(r)

[

r−1
∑

s=0

|A|r−s−1 V
1
2 (x̃(k + s− 2r))

]2

, ε ∈ (0, ε∗1],(41)

for some ̟1(r), ̟2(r) > 0, both independent of ε. In arriving at the above inequality,

we have used the inequality

V (x̃(k)) = x̃T(k)P̃ (ε)x̃(k) ≤ λmax(P̃ (ε))x̃T(k)x̃(k).

Now, let η > 1 be any constant. If V (x̃(k + s)) < ηV (x̃(k)), ∀s ∈ [−r, 0], then,

∆V (x̃(k)) ≤ −ε
2
λ−1

max(P̃ (ε))V (x̃(k)) + ε2̟1(r)η

[

r−1
∑

s=0

|A|r−s−1

]

V (x̃(k))

+ε4̟2(r)η
2

[

r−1
∑

s=0

|A|r−s−1

]2

V (x̃(k))

= −ε





1

2
λ−1

max(P̃ (ε)) − ε̟1(r)η

[

r−1
∑

s=0

|A|r−s−1

]

−ε3̟2(r)η
2

[

r−1
∑

s=0

|A|r−s−1

]2


 V (x̃(k)), ε ∈ (0, ε∗1],(42)

where the following estimate was used,

V
1
2 (x̃(k + s− 2r)) ≤ √

ηV
1
2 (x̃(k − r)) ≤ ηV

1
2 (x̃(k)), ∀s ∈ [−r, 0].

We recall that, by the definition of P̃ (ε) in (35) and because of (16), λmax(P̃ (ε)),

as a function of ε, is bounded from below by a positive scalar independent of ε. It is
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clear that, for any given r ≥ 0 and η > 0, there exists an ε∗ ∈ (0, ε∗1], such that, for

all ε ∈ (0, ε∗],

(43) ∆V (x̃(k)) ≤ −µ(ε)V (x̃(k)), if V (x̃(k + s)) < ηV (x̃(k)), ∀s ∈ [−r, 0],

for some positive scalar µ(ε). It thus follows from Lemma 4 that the closed-loop

system (28) is asymptotically stable. �

Theorem 1 involves the linear state feedback law (25), whose gain matrix depends

explicitly on the value of r. While for some special cases, delay independent feedback

laws might achieve stabilization, the knowledge of the delay r is in general necessary.

To see this, consider the simple system,

x(k + 1) = −x(k) + u(k − r), x ∈ R,

which has a single open loop pole located on the unit circle at z = −1. Let us consider

a delay independent feedback law

u(k) = αx(k).

Under this feedback law, the closed-loop system is given by

x(k + 1) = −x(k) + αx(k − r),

which has the following characteristic equation

zr+1 + zr − α = 0.

Using the Jury table, it is straightforward to verified that, when r is an odd number, a

necessary condition for the system to be stable is α < 0, and for an even r, a necessary

condition for the system to be stable is α > 0. This clearly shows that the knowledge

of the delay r is indispensable in the construction of stabilizing feedback laws.

Given this necessary condition, let us construct a state feedback law of the form

(25) as follows

u(k) = F (ε)Arx(k) = (−1)rεx(k), ε > 0,

which results in the following closed-loop system characteristic equation

zr+1 + zr − (−1)rε = 0.

Using root locus arguments, it can be verified that the closed-loop system is indeed

asymptotically stable for sufficiently small value of ε, as Theorem 1 indicates. The

root locus arguments also justifies the use of low gain feedback.
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The following theorem shows that if all eigenvalues of A are either at z = 1

or strictly inside the unit circle, then the system (1) can indeed be asymptotically

stabilized by a linear state feedback law (26), whose gain does not depend on the

value of r. The intuition to this intricate difference between the poles at z = 1 and

the poles at other locations on the unit circle is the following. Under the low gain

feedback, open loop poles at z = 1 are relocated to 1− ε. As a result, the closed-loop

dynamics corresponding to these poles, and hence the control input, evolves slowly

and the effect of the delay is small. On the other hand, under the low gain feedback,

a pole at z = −1 or a conjugate pair of poles at other locations on the unit circle

are shrunk toward the origin and relocated on the circle with a radius of 1− ε. Even

though the norm of the two states associated with these two poles decays slowly, the

states, and hence the control input, oscillate at a constant frequency no matter how

small ε is. That is, the states oscillate and decay to zero within the envelope defined

by ±(1 − ε)k. Thus, the factor Ar in the feedback gain is used to account for the

effect of the delay in control input. This intricate difference between the oscillating

nature of the closed-loop state trajectories resulting from an open loop pole at z = −1

or from pure imaginary open loop poles and the non-oscillating nature of the state

trajectories resulting from open loop poles at z = 1 can be easily observed in the

simulation results presented in Section 6.

Theorem 2. Consider the closed-loop system comprising of the system (1) and

the linear state feedback law (26). Let all eigenvalues of A be either at z = 1 or

strictly inside the unit circle. Then, for any given arbitrarily large r ≥ 0, there exists

an ε∗ > 0, such that, for each ε ∈ (0, ε∗], the closed-loop system is asymptotically

stable.

Proof. Under the linear state feedback law (26), the closed-loop system is given

by,

x(k + 1) = Ax(k) +BF (ε)x(k − r)

= (A+BF (ε))x(k) +BF (ε)(x(k − r) − x(k)).(44)

Without loss of generality, assume that the pair (A,B) are already in the form of

(22)-(23). Partitioning the state x according to the structure of (22)-(23),

x =
[

xT

1 xT

2 · · · xT

l xT

0

]T

, xi ∈ Rni , i ∈ [1, l],
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we rewrite the state equation (44) as follows

(45)



























































































x1(k + 1) = (A1 +B1F1(ε))x1(k)

+

l
∑

j=2

B1jFj(ε)xj(k) +BR1F (ε)(x(k − r) − x(k)),

x2(k + 1) = (A2 +B2F2(ε))x2(k)

+

l
∑

j=3

B2jFj(ε)xj(k) +BR2F (ε)(x(k − r) − x(k)),

...

xl(k + 1) = (Al +BlFl(ε))xl(k) +BRlF (ε)(x(k − r) − x(k)),

x0(k + 1) = A0x0(k) +

l
∑

j=1

B0jFj(ε)xj(k) +BR0F (ε)(x(k − r) − x(k)),

where for each i = 1 to l, BRi is the ith row of the right hand side of (23) and BR0 is

the last row.

For each i = 1 to l, let Qi(ε), Si(ε), J̃i(ε), P̃i, γi, αi, βi, and ϑi be the matrices

Q(ε), S(ε), J̃(ε) and P̃ and the constants γ, α, β and ϑ as defined in Lemmas 1-3,

but for the triple (Ai, Bi, Fi(ε)). Define a state transformation as,

(46) x̃ =
[

x̃T

1 , x̃
T

2 , · · · , x̃T

l , x̃
T

0

]T

,

where x̃0 = x0, and, for each i = 1 to l, x̃i = Si(ε)Q
−1
i (ε)xi.

It follows from Lemmas 1 and 2 that, under this state transformation, the state

equation (45) can be written as

(47)






































































































x̃1(k + 1) = J̃1(ε)x̃1(k) +
l

∑

j=2

S1(ε)Q
−1
1 (ε)B1jFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)

+S1(ε)Q
−1
1 (ε)BR1F (ε)Q(ε)S−1(ε) (x̃(k − r) − x̃(k)) ,

x̃2(k + 1) = J̃2(ε)x̃2(k) +

l
∑

j=3

S2(ε)Q2(ε)B2jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

+S2(ε)Q
−1
2 (ε)BR2F (ε)Q(ε)S−1(ε) (x̃(k − r) − x̃(k)) ,

...

x̃l(k + 1) = J̃l(ε)x̃l(k) + Sl(ε)Q
−1
l (ε)BRlF (ε)Q(ε)S−1(ε) (x̃(k − r) − x̃(k)) ,

x̃0(k + 1) = A0x̃0(k) +

l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

+BR0F (ε)Q(ε)S−1(ε) (x̃(k − r) − x̃(k)) ,

where

Q(ε) = blkdiag {Q1(ε), Q2(ε), · · · , Ql(ε), I} ,
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and

S(ε) = blkdiag {S1(ε), S2(ε), · · · , Sl(ε), I} .

Since all eigenvalues of Ai are at z = 1, it follows from Lemma 2 that

J̃i(ε) = J̃+1(ε)

=















(1 − ε) ε

. . .
. . .

(1 − ε) ε

(1 − ε)















ni×ni

= Ini
+ ε















−1 1

. . .
. . .

−1 1

−1















ni×ni

.(48)

Thus, the state equation (47) can be written in the following compact form,

(49) x̃(k + 1) = x̃(k) + Ã(ε)x̃(k) + S(ε)Q−1(ε)BF (ε)Q(ε)S−1(ε) (x̃(k − r) − x̃(k)) ,

where Ã(ε) is defined in an obvious way, and by (48) and Lemma 3, each of its elements

is of the order of ε. Also by Lemma 3, elements of S(ε)Q−1(ε)BF (ε)Q(ε)S−1(ε) are

also of the order of ε.

It follows from (49) that

x̃(k − r) − x̃(k) = −
r−1
∑

s=0

(

Ã(ε)x̃(k + s− r) + S(ε)Q−1(ε)B

×F (ε)Q(ε)S−1(ε) (x̃(k + s− 2r) − x̃(k + s− r))
)

.(50)

Let us now choose a Lyapunov function

(51) V (x̃) =

l
∑

i=1

κix̃T

i P̃ix̃i + x̃T

0 P̃0x̃0 := x̃TP̃ x̃,

where P̃0 > 0 is such that

AT

0 P̃0A0 − P̃0 = −I,

κ > 0 is a constant whose value is to be determined later, and

P̃ = blkdiag
{

κP̃1, κ
2P̃2, · · · , κlP̃l, P̃0

}

.

The existence of such a P̃0 is due to the fact that A0 is asymptotically stable.
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It follows from (50) that

(52) |x̃(k − r) − x̃(k)| ≤ ̟0(κ)ε

r−1
∑

s=0

(

V
1
2 (x̃(k + s− r)) + V

1
2 (x̃(k + s− 2r))

)

,

for some ̟0(κ) > 0, dependent on κ.

The difference of V along the trajectories of the closed-loop system (47) can now

be evaluated as follows,

∆V (x̃(k)) =

l
∑

i=1






κix̃T

i (k)
(

J̃T

i (ε)P̃i(ε)J̃i(ε) − P̃i(ε)
)

x̃i(k)

+2

l
∑

j=i+1

κix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)

+2κi





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×Si(ε)Q
−1
i (ε)BRiF (ε)Q(ε)S−1(ε) (x̃(k − r) − x̃(k))

+ki





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)











−x̃T

0 (k)
(

AT

0 P̃0A0 − P̃0

)

x̃0(k) + 2

n
∑

j=1

x̃T

0 (k)AT

0 P̃0B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

+





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





T

P0





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





+2

[

l
∑

i=1

κix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + x̃T

0A
T

0 P̃0BR0

]

×F (ε)Q(ε)S−1(ε)(x̃(k − r) − x̃(k))

+(x̃(k − r) − x̃(k))T(S−1(ε))TQT(ε)FT(ε)

×
[

l
∑

i=1

κiBT

Ri(Q
−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi +BT

R0P̃0BR0

]

×F (ε)Q(ε)S−1(ε)(x̃(k − r) − x̃(k))
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≤
l

∑

i=1






− εκix̃T

i (k)x̃i(k)

+2κi

l
∑

j=i+1

x̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)

+ki





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)











−x̃T

0 (k)x̃0(k) + 2

n
∑

j=1

x̃T

0 (k)P̃0B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

+





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





T

P0





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





+2

l
∑

i=1






κi





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)Si(ε)Q
−1
i (ε)BRi

+ kix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + x̃T

0A
T

0 P̃0BR0







×F (ε)Q(ε)S−1(ε) (x̃(k − r) − x̃(k))

+ (x̃(k − r) − x̃(k))T(S−1(ε))TQT(ε)FT(ε)

×
[

l
∑

i=1

κiBT

Ri(Q
−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi +BT

R0P̃0BR0

]

× F (ε)Q(ε)S−1(ε)(x̃(k − r) − x̃(k)).(53)

By Lemma 3, the matrices defining the (x̃i, x̃j) cross terms, besides the term

x̃T

0 (k)x̃0(k), are all of the order of ε. This fact, along with (52), then imply that there

exist a constant κ > 0 and an ε∗1 ∈ (0, 1] such that,

∆V (x̃(k)) ≤ −ε
2
x̃T(k)x̃(k) + ε2̟1V

1
2 (x̃(k))

r−1
∑

s=0

(

V
1
2 (x̃(k + s− r)) + V

1
2 (x̃(k + s− 2r))

)

+ε4̟2

[

r−1
∑

s=0

(

V
1
2 (x̃(k + s− r)) + V

1
2 (x̃(k + s− 2r))

)

]2

, ε ∈ (0, ε∗1],(54)

for some constants ̟1 > 0 and ̟2 > 0.
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Now, let η > 1 be any constant. If V (x̃(k + s)) < ηV (x̃(k)), ∀s ∈ [−r, 0], then

∆V (x̃(k)) ≤ −ε
2
λ−1

max(P̃ )V (x̃(k)) + ε2
(

̟1r
(

η + η2
)

+ ε2̟2r
2
(

η + η2
)2

)

V (x̃(k))

= −ε
(

1

2
λ−1

max(P̃ ) − ε̟1r
(

η + η2
)

− ε3̟2r
2
(

η + η2
)2

)

V (x̃(k)).(55)

It is clear that, for any given r ≥ 0 and η > 0, there exists an ε∗ ∈ (0, ε∗1], such that,

for all ε ∈ (0, ε∗],

(56) ∆V (x̃(k)) ≤ −µ(ε)V (x̃(k)), if V (x̃(k + s)) < ηV (x̃(k)), ∀s ∈ [−r, 0],

for some positive scalar µ(ε). It thus follows from Lemma 4 that the closed-loop

system (44) is asymptotically stable. �

To examine the conservativeness of the results of Theorems 1 and 2, we consider

the following simple system, whose open loop system is exponentially unstable,

(57)

{

x(k + 1) = βx(k) + u(k − r), β > 1,

u(k) = −αx(k).

We will show that, for large enough delay r, the system (57) is not asymptotically

stable for any choice of the feedback gain α, and thus the conditions of Theorems

1 and 2 are tight. To this end, let us consider the characteristic equation of the

closed-loop system,

(58) zr+1 − βzr + α = 0,

or

(59) 1 + α
1

zr(z − β)
= 0,

and examine its root loci. Plotted in Fig. 1 is the pole-zero locations of the open loop

system corresponding to the characteristic equation (59). For α < 0, there will be a

branch that travels on the real axis to the right of z = β. This the closed-loop system

would not be stable for any values of r and α ≤ 0.

We next consider the case when α > 0. In this case, two branches of the loci will

travel, as the value of α increases, toward each other on the real axis, one starting at

z = 0 and the other at z = β. They will meet at the breakaway point

za =
βr

r + 1
,

which is outside the unit circle for r large enough. The corresponding value of α at

the breakaway point is

αa =
βr+1

r + 1

(

r

r + 1

)r

.
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Fig. 1. Sketch of root loci of the characteristic equation (59).

Recalling that

lim
r→∞

(

r

r + 1

)r

= e−1,

we see that the value of αa grows unbounded as the value of r increases. However, a

necessary condition for the stability is |α| < 1. This implies that, for r large enough,

the branch of root loci that starts at z = β will not reach z = za, and thus remain

outside the unit circle, for 0 < α < 1. In conclusion, the closed-loop system (57), with

a large enough delay r, is not asymptotically stable for any choice of the feedback

gain α.

4. Stabilization by Linear Output Feedback. For the system (1) with all

eigenvalues of A on or inside the unit circle, we construct the following two families

of output feedback laws,

(60)

{

x̂(k + 1) = Ax̂(k) +Bu(k − r) − L(y(k) − Cx̂(k)),

u(k) = F (ε)Arx̂(k),

and

(61)

{

x̂(k + 1) = Ax̂(k) +Bu(k − r) − L(y(k) − Cx̂(k)),

u(k) = F (ε)x̂(k),
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where F (ε) is as given by (27), and L ∈ Rn×p is such that all eigenvalues of A+ LC

are strictly inside the unit circle. We note that such a matrix L exists as the pair

(A,C) is detectable.

The theorem below establishes that the output feedback law (60) asymptotically

stabilizes the system (1) as long as all eigenvalues of A are on or inside the unit circle.

Theorem 3. Consider the closed-loop system comprising of the system (1) and

the linear output feedback law (60). Let all eigenvalues of A be on or inside the unit

circle. Then, for any given arbitrarily large r ≥ 0, there exists an ε∗ > 0, such that,

for each ε ∈ (0, ε∗], the closed-loop system is asymptotically stable.

Proof. Under the linear output feedback law (60), the closed-loop system is given

by,

(62)

{

x(k + 1) = Ax(k) +BF (ε)Arx̂(k − r),

x̂(k + 1) = Ax̂(k) +BF (ε)Arx̂(k − r) − L(y(k) − Cx̂(k)),

which, in the new state (x, e) = (x, x− x̂), can be written as,

(63)

{

x(k + 1) = Ax(k) +BF (ε)Arx(k − r) −BF (ε)Are(k − r),

e(k + 1) = (A+ LC)e(k),

which in turn implies that

(64)

Arx(k−r) = x(k)−
r−1
∑

s=0

Ar−s−1BF (ε)Arx(k+s−2r)+

r−1
∑

s=0

Ar−s−1BF (ε)Are(k+s−2r)

and

(65) e(k − r) = (A+ LC)−re(k).

Substitution of (64) and (65) into (63) results in

(66)











































x(k + 1) = (A+BF )x(k) −BF (ε)
r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r)

+BF (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Are(k + s− 2r)

−BF (ε)Ar(A+ LC)−re(k),

e(k + 1) = (A+ LC)e(k).

Without loss of generality, assume that the pair (A,B) are already in the form of

(22)-(23). Partitioning the state x according to the structure of (22)-(23),

x =
[

xT

1 xT

2 · · · xT

l xT

0

]T

, xi ∈ Rni , i ∈ [1, l],
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we rewrite the state equation (66) as follows

(67)



















































































































































































































































































x1(k + 1) = (A1 +B1F1(ε))x1(k) +

l
∑

j=2

B1jFj(ε)xj(k)

−BR1F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r)

+BR1F (ε)

r−1
∑

s=0

ArBF (ε)Are(k + s− 2r)

−BR1F (ε)Ar(A+ LC)−re(k),

x2(k + 1) = (A2 +B2F2(ε))x2(k) +

l
∑

j=3

B2jFj(ε)xj(k)

−BR2F (ε)
r−1
∑

s=0

Ar−s−1BF (ε)Arx(k + s− 2r)

+BR2F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)Are(k + s− 2r)

−BR2F (ε)Ar(A+ LC)−re(k),
...

xl(k + 1) = (Al +BlFl(ε))xl(k) −BRlF (ε)

r−1
∑

s=0

ArBF (ε)Arx(k + s− 2r)

+BRlF (ε)

r−1
∑

s=0

ArBF (ε)Are(k + s− 2r)

−BRlF (ε)Ar(A+ LC)−re(k),

x0(k + 1) = A0x0(k) +

l
∑

j=1

B0jFj(ε)xj(k)

−BR0F (ε)
r−1
∑

s=0

ArBF (ε)Arx(k + s− 2r)

+BR0F (ε)

r−1
∑

s=0

ArBF (ε)Are(k + s− 2r)

−BR0F (ε)Ar(A+ LC)−re(k),

e(k + 1) = (A+ LC)e(k),

where, for each i = 1 to l, BRi is the ith row of the right hand side of (23) and BR0

is the last row.

Now, for each i = 1 to l, let Qi(ε), Si(ε), J̃i(ε), P̃i, γi, αi, βi, and ϑi be the

matrices Q(ε), S(ε), J̃(ε) and P̃ and the constants γ, α, β and ϑ as defined in

Lemmas 1-3, but for the triple (Ai, Bi, Fi(ε)). Define a state transformation as,

(68) x̃ =
[

x̃T

1 , x̃
T

2 , · · · , x̃T

l , x̃
T

0

]T

, ẽ = e,

where x̃0 = x0, and, for each i = 1 to l, x̃i = Si(ε)Q
−1
i (ε)xi.
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It follows from Lemmas 1 and 2 that, under this state transformation, the state

equation (67) can be written as

(69)8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

x̃1(k + 1) = J̃1(ε)x̃1(k) +

lX
j=2

S1(ε)Q
−1
1 (ε)B1jFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)

−S1(ε)Q
−1
1 (ε)BR1F (ε)

r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+S1(ε)Q
−1
1 (ε)BR1F (ε)

r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−S1(ε)Q
−1
1 (ε)BR1F (ε)Ar(A + LC)−r ẽ(k),

x̃2(k + 1) = J̃2(ε)x̃2(k) +

lX
j=3

S2(ε)Q2(ε)B2jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

−S2(ε)Q
−1
2 (ε)BR2F (ε)

r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

−S2(ε)Q
−1
2 (ε)BR2F (ε)eAτe−(A+LC)τ ẽ(k),

+S2(ε)Q
−1
2 (ε)BR2F (ε)

r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−S2(ε)Q
−1
2 (ε)BR2F (ε)Ar(A + LC)−r ẽ(k),

...

x̃l(k + 1) = J̃l(ε)x̃l(k)

−Sl(ε)Q
−1
l (ε)BRlF (ε)

r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+Sl(ε)Q
−1
l (ε)BRlF (ε)

r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−Sl(ε)Q
−1
l (ε)BR2F (ε)Ar(A + LC)−r ẽ(k),

x̃0(k + 1) = A0x̃0(k) +
lX

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

−BR0F (ε)

r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s − 2r),

+BR0F (ε)
r−1X
s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−BR0F (ε)Ar(A + LC)−rẽ(k),

ẽ(k + 1) = (A + LC)ẽ(k),

where

Q(ε) = blkdiag {Q1(ε), Q2(ε), · · · , Ql(ε), I} ,

and

S(ε) = blkdiag {S1(ε), S2(ε), · · · , Sl(ε), I} .
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Let us choose the Lyapunov function

(70) V (x̃, ẽ) =

l
∑

i=1

κix̃T

i P̃ix̃i + x̃T

0 P̃0x̃0 + κl+1ẽTQ̃ẽ := x̃TP̃ x̃+ κl+1ẽTQ̃ẽ,

where P̃0 > 0 and Q̃ > 0 are the solutions to the Lyapunov equations

AT

0 P̃0A0 − P̃0 = −I,

and

(A+ LC)TQ̃(A+ LC) − Q̃ = −I,

respectively, κ > 0 is a constant whose value is to be determined later, and

P̃ = blkdiag
{

κP̃1, κ
2P̃2, · · · , κlP̃l, P̃0

}

.

The existence of such P̃0 and Q̃ is due to the fact that both A0 and A + LC are

asymptotically stable.

The difference of V along the trajectories of the closed-loop system (69) can be

evaluated as follows

∆V (x̃(k)) =

l
∑

i=1






κix̃T

i (k)
(

J̃T

i (ε)P̃i(ε)J̃i(ε) − P̃i(ε)
)

x̃i(k)

+2

l
∑

j=i+1

κix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)

−2κix̃T

i (k)J̃i(ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRiF (ε)Ar(A+ LC)−1ẽ(k)

−2κi





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×Si(s)Q
−1
i (ε)BRiF (ε)Ar(A+ LC)−r ẽ(k)

−2κi





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×Si(ε)Q
−1
i (ε)BRiF (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

−2κi





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×Si(ε)Q
−1
i (ε)BRiF (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)
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+2κiẽT(k)
(

Si(ε)Q
−1
i (ε)BRiF (ε)Ar(A+ LC)−r

)T

P̃i(ε)Si(ε)Q
−1
i (ε)BRi

×F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

−2κiẽT(k)
(

Si(ε)Q
−1
i (ε)BRiF (ε)Ar(A+ LC)−r

)T

P̃i(ε)Si(ε)Q
−1
i (ε)BRi

×F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

+ki





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





T

P̃i(ε)

×





l
∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj(ε)Qj(ε)S

−1
j (ε)x̃j(k)





+κi
(

Si(s)Q
−1
i (ε)BRiF (ε)Ar(A+ LC)−r ẽ(k)

)T

P̃i(ε)

×Si(s)Q
−1
i (ε)BRiF (ε)Ar(A+ LC)−r ẽ(k)







−x̃T

0 (k)
(

AT

0 P̃0A0 − P̃0

)

x̃0(k) + 2
l

∑

j=1

x̃T

0 (k)AT

0 P̃0B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)

−2x̃T

0 (k)AT

0 P̃0BR0F (ε)Ar(A+ LC)−r ẽ(k)

−2





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





T

P̃0BR0F (ε)Ar(A+ LC)−r ẽ(k)

+





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





T

P̃0





l
∑

j=1

B0jFj(ε)Qj(ε)S
−1
j (ε)x̃j(k)





+
(

BR0F (ε)Ar(A+ LC)−r ẽ(k)
)T

P̃0BR0F (ε)Ar(A+ LC)−r ẽ(k)

−2

[

l
∑

i=1

κix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + x̃T

0A
T

0 P̃0BR0

]

×F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

+2

[

l
∑

i=1

κix̃T

i (k)J̃T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + x̃T

0A
T

0 P̃0BR0

]

×F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

+

[

F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]T

×
[

l
∑

i=1

κiBT

Ri(Q
−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + BT

R0P̃0BR0

]
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×
[

F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]

+

[

F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

]T

×
[

l
∑

i=1

κiBT

Ri(Q
−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi +BT

R0P̃0BR0

]

×
[

F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

]

−2

[

F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]T

×
[

l
∑

i=1

κiBT

Ri(Q
−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi +BT

R0P̃0BR0

]

×
[

F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

]

+κl+1ẽT(k)
(

(A+ LC)TQ̃(A+ LC) − Q̃
)

ẽ(k)(71)

In view of Lemmas 3, the matrices defining the (x̃i, x̃j) and (x̃i, ẽ) cross terms,

other than the terms x̃T

0 (k)
(

AT

0 P̃0A0 − P̃0

)

x̃0(k) and ẽT(k)
(

(A+ LC)TQ̃(A+ LC)

−Q̃
)

ẽ(k), are all in the order of ε. It is then straightforward to verify that, there

exists a constant κ > 0 and an ε∗1 ∈ (0, 1] such that,

∆V (x̃(k), ẽ(k)) ≤ −ε
2
x̃T(k)x̃(k) − 1

2
ẽT(k)ẽ(k)

+x̃T(k)M1(ε)F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

+x̃T(k)M2(ε)F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

+ẽT(k)M3(ε)F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

+ẽT(k)M4(ε)F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

+

[

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]T

FT(ε)M5(ε)

×F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)
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+

[

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

]T

FT(ε)M5(ε)

×F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r)

+

[

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)x̃(k + s− 2r)

]T

FT(ε)M6(ε)

×F (ε)

r−1
∑

s=0

Ar−s−1BF (ε)ArQ(ε)S−1(ε)ẽ(k + s− 2r),(72)

where matrices Mi(ε), i = 1, 2, · · · , 6, are defined in an obvious way and are all of

order ε0.

By using Lemma 3 again and (40), we can easily see that,

∆V (x̃(k), ẽ(k)) ≤ −ε
2

min
{

λ−1
max

(

P̃
)

, λ−1
max

(

κl+1Q̃
)}

V (x̃(k), ẽ(k))

+ε2̟1(r)V
1
2 (x̃(k), ẽ(k))

r−1
∑

s=0

|A|r−s−1V
1
2 (x̃(k + s− 2r), ẽ(k + s− 2r))

+ε4̟2(r)

[

r−1
∑

s=0

|A|r−s−1V
1
2 (x̃(k + s− 2r), ẽ(k + s− 2r))

]2

, ε ∈ (0, ε∗1],(73)

for some ̟1(r), ̟2(r) > 0, both independent of ε.

Now, let η > 1 be any constant. If V (x̃(k + s), ẽ(k + s) < ηV (x̃(k), ẽ(k)), ∀s ∈
[−r, 0],

∆V (x̃(k), ẽ(k)) ≤ −ε
2

min
{

λ−1
max

(

P̃
)

, λ−1
max

(

κl+1Q̃
)}

V (x̃(k), ẽ(k))

+ε2̟1(r)η

[

r−1
∑

s=0

|A|r−s−1

]

V (x̃(k), ẽ(k))

+ε4̟2(r)η
2

[

r−1
∑

s=0

|A|r−s−1

]2

V (x̃(k), ẽ(k)), ε ∈ (0, ε∗1].(74)

It is now clear that, for any given r, there exists an ε∗ ∈ (0, 1] such that, for all

ε ∈ (0, ε∗],

(75) ∆V (x̃(k), ẽ(k)) ≤ −
√
εV (x̃(k), ẽ(k)).

It then follows from Lemma 4 that the closed-loop system (62) is asymptotically

stable. This completes the proof. �

Theorem 3 involves the linear output feedback law (60), which depends explicitly

on the value of r. The theorem below shows that if all eigenvalues of A are at z = 1

or strictly inside the unit circle, then the system (1) can be asymptotically stabilized
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by a linear output feedback law (61), which does not require the explicit knowledge

of τ .

Theorem 4. Consider the closed-loop system comprising of the system (1) and

the linear output feedback law (61). Let all eigenvalues of A be at z = 1 or strictly

inside the unit circle. Then, for any given arbitrarily large r ≥ 0, there exists an

ε∗ > 0, such that, for each ε ∈ (0, ε∗], the closed-loop system is asymptotically stable.

Proof. The proof follows the procedure of that of Theorem 3. But, instead of

using (64) to create the stabilizing feedback action F (ε)x(k) from the delayed feedback

FArx̂(k− r), it uses a formula similar to (50) in the proof of Theorem 2 to create the

stabilizing control action F (ε)x(k) directly from the delayed feedback F (ε)x̂(k − r).

As in the proof of Theorem 2, this is possible because, under the new state (x̃, ẽ), the

matrices J̃i(ε) − Ini
’s, where J̃i(ε) is the matrix J̃(ε)’s for the triples (Ai, Bi, Fi(ε))

as defined in Lemma 2, are of the order of ε. �

5. Semi-Global Stabilization by Saturated Linear Feedback. We next

consider the system (1) subject to actuator saturation,

(76)

{

x(k + 1) = Ax(k) +Bsat(u(k − r)), x(s) = φ(s), s ∈ [−r, 0],

y(k) = Cx(k),

where sat : Rm → Rm is the standard vector valued saturation function, i.e.,

sat(u) =
[

sat(u1) sat(u2) · · · sat(um)
]T

, sat(ui) = sgn(ui)min{ui, 1}.

Here, we have slightly abused the notation by using “sat” to denote both the scalar

valued and vector valued saturation functions. We also note that it is without loss of

generality to assume that the saturation level is unity. Non-unity saturation level can

be absorbed into the matrix B and the control u.

Our next theorem establishes semi-global stabilizability of the system (76) by

linear state or output feedback.

Theorem 5. Consider the system (76) for a given arbitrarily large r.

a) If all eigenvalues of A are on or strictly inside the unit circle, then, either

the family of linear state feedback laws (25) or the family of linear output

feedback laws (60) semi-globally stabilizes the system at the origin, i.e., for

any a priori given bounded set Φ ⊂ Cn,r (for state feedback) or Φ ⊂ C2n,r (for

output feedback), there exists an ε∗ > 0, such that, for each ε ∈ (0, ε∗], the

closed-loop system is asymptotically stable at the origin with Φ contained in

the domain of attraction.

b) If eigenvalues of A are either at z = 1 or strictly inside the unit circle, then,

either the family of linear state feedback laws (26) or the family of linear

output feedback laws (61) semi-globally stabilizes the system at the origin.
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Proof. We first prove Item a) of the theorem. Under the linear state feedback law

(25), the closed-loop system can be written as

(77) x(k + 1) = Ax(k) +Bsat(F (ε)Arx(k − r)).

As in the proof of Theorem 1, we consider a state transformation x̃ = S(ε)Q−1(ε)x

and Lyapunov function V (x̃) = x̃TP̃ x̃. Let

ρ∗ ≥ sup
x∈Φ,s∈[−r,0],ε∈(0,1]

x̃T(s)P̃ x̃(s).

Such a ρ∗ exists since Φ is bounded and |Q−1(ε)| ≤ 1+
∑l

i=1 ϑi by Lemma 3. Clearly,

x ∈ Ψ implies that

x̃ ∈MV (ρ∗) := {φ ∈ Cn,r : V (φ(s)) ≤ ρ, ∀s ∈ [−r, 0]} .

Let ε∗1 ∈ (0, 1] be such that

(78) MV (ρ∗) ⊂ L (F (ε)Ar) :=
{

x̃ ∈ Cn,r :
∣

∣F (ε)ArQ(ε)S−1(ε)x̃
∣

∣

∞
≤ 1

}

,

where | · |∞ denotes the infinity norm of a vector. The existence of such an ε∗1 is due

to (40) and the fact that MV (ρ∗) is independent of ε.

It is clear that, within MV (ρ∗), the closed-loop system (77) reduces to a linear

system, which in the transformed state x̃ is given as (33). Thus, as established in the

proof of Theorem 1, for any given η > 1, there exist an η > 1 and an ε∗ ∈ (0, ε∗1] such

that, within MV (ρ∗),

(79) V (x̃(k)) ≤ −µ(ε)V (x̃(k)), if V (x̃(k + s)) < ηV (x̃(k)), ∀s ∈ [−r, 0],

for some positive scalar µ(ε). It then follows from Lemma 4 that the closed-loop

system (77) is asymptotically stable at x ≡ 0 with MV (ρ∗) ⊃ Φ contained in the

domain of attraction.

The output feedback result can be established in a similar way. Under the linear

output feedback law (60), the closed-loop system can be written in the state (x, e) =

(x, x − ê) as

(80)

{

x(k + 1) = Ax(k) +Bsat (F (ε)Arx(k − r) − F (ε)Are(k − r)) ,

e(k) = (A+ LC)e(k),

As in the proof of Theorem 3, we will work with the transformed state (x̃, ẽ) and

define the Lyapunov function as

V (x̃, ẽ) = x̃TP̃ x̃+ κl+1ẽTQ̃ẽ.

Let

ρ∗ ≥ sup
(x,x̂)∈Φ,s∈[−r,0],ε∈(0,1]

{

x̃T(s)P̃ x̃(s) + κl+1ẽT(s)Q̃ẽ(s)
}

.
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Such a ρ∗ exists since Φ is bounded and |Q−1(ε)| ≤ 1+
∑l

i=1 ϑi by Lemma 3. Clearly,

(x, x̂) ∈ Φ implies that

(x̃, ẽ) ∈MV (ρ∗) := {φ ∈ C2n,r : V (φ(s)) ≤ ρ, ∀s ∈ [−r, 0]} .

Let ε∗1 ∈ (0, 1] be such that

MV (ρ∗) ⊂ L ([F (ε)Ar − F (ε)Ar])

:=
{

(x̃, ẽ) ∈ C2n,r :
∣

∣F (ε)ArQ(ε)S−1(ε)x̃− F (ε)Ar ẽ
∣

∣

∞
≤ 1

}

.(81)

The existence of such an ε∗1 is due to (40) and the fact that MV (ρ∗) is independent

of ε.

It is clear that, within MV (ρ∗), the closed-loop system (80) reduces to a linear

system, which in the transformed state (x̃, ẽ) is given as (69). Thus, as shown in the

proof of Theorem 3, there exist, for any given η > 1, an η > 1, and an ε∗ ∈ (0, ε∗1]

such that, within MV (ρ∗),

∆V (x̃(k), ẽ(k)) ≤ −
√
εV (x̃(k), ẽ(k)),(82)

if V (x̃(k + s), ẽ(k + s)) < ηV (x̃(k), ẽ(k)), ∀s ∈ [−r, 0].

It then follows from Lemma 4 that the closed-loop system (80) is asymptotically

stable at the origin with MV (ρ∗) ⊃ Ψ contained in the domain of attraction.

The proof of Item b) follows the same procedure as in the proof of Item a), but

uses the Lyapunov analysis in the proof of Theorems 2 and 4 instead of the analysis

in the proof of Theorems 1 and 3. For the validity of these Lyapunov analysis, we

establish (78) and (81) without the factor Ar, which can be easily done by using the

fact that |F (ε)Q(ε)S−1(ε)| ≤ ε
∑l

i=1 αi. �

6. Examples. Example 1. Consider the system (1) with

(83) A =













0 1 0 0

0 0 1 0

0 0 0 1

−1 2
√

2 −4 2
√

2













, B =













0

0

0

1













, C =
[

1 0 0 0
]

.

The open loop system has two pair of repeated poles on the unit circle at z = ±
√

2/2±
j
√

2/2. Following the proposed design method, we choose

F (ε) =
[

−ε4 + 4ε3 − 6ε2 + 4ε −2
√

2ε3 + 6
√

2ε2 − 6
√

2ε −4ε2 + 8ε −2
√

2ε
]

.

Then, the family of linear state feedback laws (25) is given by

(84) u(k) = F (ε)Arx(k).
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To design an output feedback law, we choose L =
[

−2
√

2 −4 −2
√

2 3/4
]T

,

which places the eigenvalues of A+ LC at z = ±1/2 ± j/2, and obtain the family of

linear output feedback laws (60) as follows,

(85)8>>>>>>><>>>>>>>: x̂(k + 1) =

266664 −2
√

2 1 0 0

−4 0 1 0

−2
√

2 0 0 1

−1/4 0 −2 2
√

2

377775 x̂(t) +

266664 0

0

0

1

377775Arx̂(k − r) −

266664 −2
√

2

−4

−2
√

2

3/4

377775 y(k),

u(k) = F (ε)Arx̂(k).

Some simulation results of the resulting closed-loop systems are shown in Figs. 2 and

3.
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Fig. 2. Example 1. State responses under state feedback law: r = 1 and ε = 0.2 (left plot);

r = 4 and ε = 0.1 (right plot).
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Fig. 3. Example 1. State responses under output feedback law: r = 1 and ε = 0.2 (left plot);

r = 4 and ε = 0.1 (right plot).

To verify that these two families of linear feedback laws semi-globally stabilize the

given system subject to actuator saturation, we simulate closed-loop systems under
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a given non-zero initial condition for various values of ε. Simulation results (Figs. 4

and 5) indicate that the magnitude of the control input indeed decreases as the value

of ε decreases.
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Fig. 4. Example 1. State responses and control input under state feedback law: r = 1 and

ε = 0.2 (left plots); r = 1 and ε = 0.02 (right plots).

Example 2. Consider the system (1) with

(86) A =



















1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1



















, B =



















0 2

0 −1

1 2

0 0

0 1



















, C =

[

1 0 0 0 0

0 0 0 1 0

]

.

This system contains two subsystems, each with poles at z = 1. The two subsystems

are coupled through inputs. Then, the family of linear state feedback laws (26) is

given by

(87) u(k) =

[

−ε3 −3ε2 −3ε 0 0

0 0 0 −ε2 −2ε

]

x(k).
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Fig. 5. Example 1. State responses and control input under output feedback law: r = 1 and

ε = 0.2 (left plots); r = 1 and ε = 0.02 (right plots).

To design an output feedback law, we choose

L =



















−3 0

−3 0

−1 0

0 −1

0 −1/4



















,

which places the eigenvalues of (A + LC) at {0, 0, 0, 1/2, 1/2}. The output feedback
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law (61) can then be computed as

(88)8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
x̂(k + 1) =

266666664 −2 1 0 0 0

−3 1 1 0 0

−1 0 1 0 0

0 0 0 0 1

0 0 0 −1/4 1

377777775x̂(k)

+

266666664 0 0 0 −2ε2
−4ε

0 0 0 ε2 2ε

−ε3
−3ε2

−3ε −2ε2
−4ε

0 0 0 0 0

0 0 0 −ε2
−2ε

377777775x̂(k − r) −

266666664 −3 0

−3 0

−1 0

0 −1

0 −1/4

377777775 y(k),

u(k) =

"
−ǫ3 −3ǫ2 −3ǫ 0 0

0 0 0 −ǫ2 −2ǫ

#
x̂(k).

Shown in Figs. 6 and 7 are some simulation results of the resulting closed-loop

systems.

To verify that these two families of linear feedback laws semi-globally stabilize the

given system subject to actuator saturation, we simulate closed-loop systems under

a given non-zero initial condition for various values of ε. Simulation results (Figs. 8

and 9) indicate that the magnitude of the control input indeed decreases as the value

of ε decreases.
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Fig. 6. Example 2. State responses under state feedback law: r = 1 and ε = 0.2 (left plot);

r = 4 and ε = 0.1 (right plot).

7. Conclusions. In this paper, we have examined the problem of stabilizing a

discrete-time linear system with a delayed linear feedback. We established that a
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Fig. 7. Example 2. State responses under output feedback law: r = 1 and ε = 0.2 (left plot);

r = 4 and ε = 0.05 (right plot).

discrete-time linear system with an arbitrarily large delay in the input can be asymp-

totically stabilized by either linear state or output feedback as long as the open loop

system is not exponentially unstable (i.e., all the open loop poles are on or inside the

unit circle). It is further shown that such systems, when subject to actuator satura-

tion, are semi-globally asymptotically stabilizable by linear state or output feedback.

Simple examples are constructed to show that these results are not conservative.
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