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A MODEL REFERENCE ADAPTIVE SEARCH METHOD FOR

STOCHASTIC GLOBAL OPTIMIZATION∗

JIAQIAO HU† , MICHAEL C. FU‡ , AND STEVEN I. MARCUS§

Abstract. We propose a randomized search method called Stochastic Model Reference Adap-

tive Search (SMRAS) for solving stochastic optimization problems in situations where the objective

functions cannot be evaluated exactly, but can be estimated with some noise (or uncertainty), e.g.,

via simulation. The method generalizes the recently proposed Model Reference Adaptive Search

(MRAS) for deterministic optimization, which is motivated by the well-known Cross-Entropy (CE)

method. We prove global convergence of SMRAS in a general stochastic setting, and carry out

numerical studies to illustrate its performance. An emphasis of this paper is on the application

of SMRAS for solving static stochastic optimization problems; its various applications for solving

dynamic decision making problems can be found in [7].

Keywords: stochastic optimization, global optimization, combinatorial optimization.

1. Introduction. Stochastic optimization problems arise in a wide range of ar-

eas such as manufacturing, communication networks, system design, and financial

engineering. These problems are typically much more difficult to solve than their

deterministic counterparts, either because an explicit relation between the objective

function and the underlying decision variables is unavailable or because the cost of a

precise evaluation of the objective function is too prohibitive. Oftentimes, one has to

use simulation or real-time observations to evaluate the objective function. In such

situations, all the objective function evaluations will contain some noise, so special

techniques are generally used (as opposed to the deterministic optimization methods)

to filter out the noisy components. Roger Brockett has made many important con-

tributions in stochastic systems and optimization, having introduced the two senior

authors to various topics in these areas during their graduate studies decades ago. In

his paper [6], he discussed new issues in the mathematics of control; some of these

issues were in adaptation and learning, and in particular in using scheduled random-

ization in stochastic optimization. It is in this spirit that we approach stochastic

optimization problems.

A well-known class of methods for solving stochastic optimization problems with

continuous decision variables is stochastic approximation [20], [23]. These methods

mimic the classical gradient-based search method in deterministic optimization, and
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rely on the estimation of the gradient of the objective function. Because they are

gradient-based, these methods generally find local optimal solutions. In terms of

the different gradient estimation techniques employed, the stochastic approximation

algorithms can be generally divided into two categories: algorithms that are based

on direct gradient estimation techniques, the best-known of which are perturbation

analysis [18], [13], the likelihood ratio/score function methods [14], [27], the weak

derivative methods [22], and algorithms that are based on indirect gradient estima-

tion techniques like finite difference and its variations [29]. A detailed review of various

gradient estimation techniques can be found in [21] and [12]. Also of relevance to our

work is the low-dispersion point sets method of [33], which uses the idea of quasiran-

dom search for continuous global optimization and large deviation principle to choose

the evaluation points within the decision domain and to (adaptively) determine the

number of simulation observations to be allocated to these points.

For discrete stochastic optimization problems, one popular approach is to use

random search. This has given rise to many different stochastic discrete optimization

algorithms, including the stochastic ruler method and its modification [34], [2], the

random search methods of [4], modified simulated annealing [3], and the nested parti-

tions method of [28]. The main idea throughout is to show that the algorithm induces

a Markov chain over the solution space, and the Markov chain eventually settles down

on the set of (possibly local) optimal solutions.

From an algorithmic point of view, there is another class of randomized search

techniques, which [35] have termed the model-based methods, that can also be applied

to stochastic discrete optimization problems. Unlike the aforementioned approaches,

where the search for new candidate solutions depends directly on previously generated

solutions, the model-based search methods are based on sampling from an interme-

diate probabilistic model on the solution space, which is updated iteratively after

evaluating the performance of the samples at each iteration. Most of the algorithms

that fall in this category are iterative methods involving the following two steps:

1) Generate candidate solutions (e.g., random samples) according to a specified

probabilistic model on the solution space.

2) Update the probabilistic model based on the candidate solutions generated

in the previous step, to bias the future search toward the region containing

high quality solutions.

A well-established model-based method for stochastic discrete optimization is Stochas-

tic Ant Colony Optimization (S-ACO) [15]. S-ACO is the extension of the original Ant

Colony Optimization (ACO) algorithm [10] for deterministic problems. The method

uses Monte-Carlo sampling to estimate the objective and is shown (under some reg-

ularity assumptions) to converge with probability one to the global optimal solution

for stochastic combinatorial problems. Another method that is closely related to the

work of this paper is the Cross-Entropy (CE) method [26]. The method was originally
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motivated by the problem of estimating probabilities of rare events in simulation, be-

fore it was discovered that it could be modified to solving deterministic optimization

problems (cf. e.g., [24]). The key idea of CE is to use a family of parameterized

distributions to successively approximate an optimal (importance sampling) distribu-

tion concentrated only on the set of (near) optimal solutions, which is carried out

by iteratively estimating the optimal parameter that minimizes the Kullback-Leibler

(KL) distance between the parameterized distribution and the target optimal distribu-

tion. More recently, [25] shows that the method is also capable of handling stochastic

network combinatorial optimization problems, and in that particular context, estab-

lishes the probability one convergence of the algorithm. However, to the authors’

best knowledge, there is no version of CE intended for general (continuous) stochastic

optimization problems, and the existing convergence analysis of CE is limited to very

specific settings.

In this paper, we propose a model-based method called stochastic model reference

adaptive search (SMRAS) for solving both continuous and discrete stochastic opti-

mization problems. The method is a generalization of the recently proposed MRAS

method for deterministic optimization [19]. MRAS is motivated by the CE method,

and retains the advantages of CE, in that it also uses a family of parameterized

distributions as sampling distributions to generate candidate solutions and update

the parameters by minimizing the KL distance. However, instead of targeting the

optimal importance sampling distribution as in CE, the method uses a sequence of

user-specified reference distributions to facilitate and guide the updating of the pa-

rameters associated with the parameterized distribution family. In SMRAS, a major

modification from the original MRAS method is in the way the sequence of reference

distributions is constructed. In MRAS, reference distributions are idealized probabilis-

tic models constructed based on the exact performance of the candidate solutions. In

the stochastic case, however, the objective function cannot be evaluated deterministi-

cally, so the sample average approximations of the (idealized) reference distributions

are used in SMRAS to guide the parameter updating. A similar “iterative focusing”

approach is also proposed in [32] for finding bounded rational equilibria of common-

interest games, but that approach is introduced in a deterministic context, and no

attempt has been made to show its theoretical convergence. We establish general

global convergence properties of SMRAS for a class of parameterized distributions

called the natural exponential family (NEF), where in many cases of interest (e.g.,

normal distributions are used as sampling distributions), our convergence results im-

ply that the sequence of sampling distributions will converge with probability one to

a degenerate distribution with all probability mass at the global optimum.

The rest of the paper is structured as follows. In Section 2, we give a detailed

description of the SMRAS method. In Section 3, we establish the global convergence

properties of the method. Supporting numerical studies on both continuous and
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combinatorial optimization problems are given in Section 4. Finally some future

research topics are outlined in Section 5.

2. The Stochastic Model Reference Adaptive Search Method. We con-

sider the following optimization problem:

(1) x∗ ∈ argmax
x∈X

Eψ[J (x, ψ)],

where the solution space X is a non-empty set in ℜn, which can be either continuous

or discrete, J (·, ·) is a deterministic, real-valued function, and ψ is a random variable

(possibly depending on x) representing the stochastic effects of the system. We assume

that J (x, ψ) is measurable and integrable with respect to the distribution of ψ for all

x ∈ X. We let J(x) := Eψ[J (x, ψ)]. Note that in many cases, J(x) cannot be obtained

easily, but the random variable J (x, ψ) can be observed, e.g., via simulation or real-

time observation. Each time when J (x, ψ) is observed, we use Ji(x) to denote the

ith i.i.d. random observation at x. Throughout this paper, we assume that (1) has a

unique global optimal solution, i.e., ∃x∗ ∈ X such that J(x) < J(x∗) ∀x 6= x∗, x ∈ X.

We also make the following assumption about Ji(x).
Assumption L1. For any given ǫ > 0, these exists a positive number n∗ such that

for all n ≥ n∗,

sup
x∈X

P
(∣∣∣ 1

n

n∑

i=1

Ji(x)− J(x)
∣∣∣ ≥ ǫ

)
≤ φ(n, ǫ),

where φ(·, ·) is strictly decreasing in its first argument and non-increasing in

its second argument. Moreover, φ (n, ǫ)→ 0 as n→∞.

Assumption L1 is satisfied by many random sequences, e.g., the sequence of i.i.d.

random variables with (asymptotically) uniformly bounded variance, or a class of

random variables (not necessarily i.i.d.) that satisfy the large deviations principle (cf.

e.g., [17], [33]). We remark that Assumption L1 also implies that for any given ǫ > 0,

there exist positive numbers m∗ and n∗ such that for all m ≥ m∗ and n ≥ n∗,

(2) sup
x,y∈X

P
(∣∣∣ 1

m

m∑

i=1

Ji(x)−
1

n

n∑

i=1

Ji(y)− J(x) + J(y)
∣∣∣ ≥ ǫ

)
≤ 2φ (min{m,n}, ǫ/2) .

To see this, note that

sup
x,y∈X

P
(∣∣∣ 1

m

m∑

i=1

Ji(x)−
1

n

n∑

i=1

Ji(y)− J(x) + J(y)
∣∣∣ ≥ ǫ

)

≤ sup
x,y∈X

P
(∣∣∣ 1

m

m∑

i=1

Ji(x)− J(x)
∣∣∣ +

∣∣∣ 1

n

n∑

i=1

Ji(y)− J(y)
∣∣∣ ≥ ǫ

)

≤ sup
x,y∈X

[
P

(∣∣∣ 1

m

m∑

i=1

Ji(x)− J(x)
∣∣∣ ≥ ǫ

2

)
+ P

(∣∣∣ 1
n

n∑

i=1

Ji(y)− J(y)
∣∣∣ ≥ ǫ

2

)]

≤ φ(m, ǫ/2) + φ(n, ǫ/2) for all m and n large enough by Assumption L1

≤ 2φ(min{m,n}, ǫ/2),
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where the last inequality follows because φ(·, ·) is strictly decreasing in its first argu-

ment.

2.1. Overview of the MRAS Method. The theoretical properties and prac-

tical performance of model-based methods are primarily determined by the two key

issues of how to efficiently construct or represent the probabilistic models and how

to efficiently sample from them over the solution space X. As in CE, in the MRAS

method, the probabilistic models are specified in terms of a family of parameterized

distributions {f(·, θ), θ ∈ Θ} on X, where Θ is the parameter space. The idea is that

once the parameter θ is determined, sampling from f(·, θ) can be performed relatively

efficiently. An additional advantage by using parameterized family is that the task

of constructing the entire probabilistic model now translates to the simpler task of

updating the associated parameter θ, which is carried out in MRAS by minimizing

the KL distance between the parameterized family and a sequence of intermediate

distributions called reference distributions. The sequence of reference distributions is

used to express the desired properties (e.g., convergence) of the method, and is often

selected such that it can be shown to converge to a degenerate distribution concen-

trated only on the set of optimal solutions. Thus, the key steps of MRAS are the

following:

1) Selecting a sequence of reference distributions {gk(·)} with the desired con-

vergence properties (e.g., the limit distribution being concentrated on the set

of optimal solutions).

2) Working with a parameterized family of distributions {f(·, θ), θ ∈ Θ}, where

Θ is the parameter space.

3) Optimizing the parameters {θk} iteratively by minimizing the KL distance

between the parameterized distribution f(·, θ) and the reference distributions

{gk(·)}

D(gk, f(·, θ)) := Egk

[
ln

gk(X)

f(X, θ)

]
=

∫

X

ln
gk(x)

f(x, θ)
gk(x)ν(dx),

where ν is the Lebesgue/counting measure defined on X, X is an n-dimensional ran-

dom vector taking values in X with distribution gk(·), and Egk
[·] is the expectation

taken with respect to the distribution gk(·). Intuitively speaking, the sampling distri-

butions {f(·, θk)} can be viewed as compact approximations of the reference distribu-

tions (i.e., the projection of the reference distributions on the parameterized family

{f(·, θ)}), and may hopefully retain some nice properties of {gk(·)}. Thus, as {gk(·)}
converges, the sequence of samples generated from their compact approximations

{f(·, θk)} should also converge to the optimal solution.

One primary difference between MRAS and CE has to do with the (implicit)

distribution with respect to which the KL-distance is minimized. In CE, the tar-

get distribution is the optimal importance sampling distribution for estimating the
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probability P (J(X) ≥ γ) for some γ close to J(x∗), given by

g∗(x) =
I{J(x) ≥ γ}f(x, θ)∫

X
I{J(x) ≥ γ}f(dx, θ)

,

where I{·} is the indicator function. On the other hand, MRAS uses a sequence of

user-specified reference distributions {gk(·)}. In particular, in the algorithm instanti-

ation considered in [19], the sequence {gk(x)} is given by:

(3) gk(x) =
S(J(x))gk−1(x)∫

X
S(J(x))gk−1(dx)

, ∀x ∈ X,

with g0(x) > 0, ∀x ∈ X being an initial probability density/mass function (pdf/pmf)

on X, where S(·) is a non-negative increasing function to prevent negative probabil-

ities. Thus, by assigning greater weight to solutions having larger values for J , the

sequence {gk(x)} has the property that each iteration of (3) improves the expected

performance, so that limk→∞ Egk
[S(J(X))] = S(J(x∗)) regardless of the initial g0(x)

used. In fact, the CE method can also be cast in the MRAS framework as a particu-

lar instantiation, in which gk(x) depends on the parameterized family {f(·, θ)}, not a

natural choice a priori in MRAS, where the reference distributions would generally be

chosen separately and independently from the choice of parameterized distributions.

Therefore, it turns out that the theoretical convergence of CE depends heavily on the

choices of {f(·, θ)}, and even within a given parameterized family, an inappropriate

choice of the initial parameter can also lead to non-global convergence of the algorithm

(cf. [19]).

2.2. Algorithm Description. We now focus on the sequence of reference distri-

butions {gk(·)} given by (3), and generalize the MRAS method to stochastic settings

where the objective function J(x) in (1) can only be estimated, e.g., via simulation or

real-time observation. In the SMRAS method we propose below, one key modifica-

tion of the original deterministic algorithm is to use approximations {g̃k(·)} of {gk(·)}
as the sequence of reference distributions, which is constructed based on the sample

average approximation of the objective function J(x).

A high-level description of the SMRAS method is presented in Figure 1. We

provide a detailed discussion in the following subsections.

2.2.1. Initialization. In SMRAS, there are two allocation rules. The first one,

denoted by {Nk, k = 0, 1 . . .}, is called the sampling allocation rule, where each Nk

determines the number of samples (candidate solutions) to be generated from the

current sampling distribution at the kth iteration. The second is the observation

allocation rule {Mk, k = 0, 1, . . .}, which allocates Mk simulation observations to each

of the candidate solutions generated at the kth iteration. We require both Nk and

Mk to increase as the number of iterations grows for convergence, but other than

that, there is considerable flexibility in their choices. To fix ideas, we use a parameter
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Stochastic Model Reference Adaptive Search (SMRAS)

• Initialization: Specify an initial sample size N0 > 1, α > 1, ρ ∈ (0, 1],

ε > 0, a simulation allocation rule {Mk}, a strictly increasing performance

function S(·) : ℜ → ℜ+, a mixing coefficient λ ∈ (0, 1), and an initial pdf/pmf

f(x, θ0) > 0 ∀x ∈ X. Set the iteration counter k ← 0.

• Repeat until a specified stopping rule is satisfied:

1. Sampling Candidate Solutions: Generate Nk candidate solutions

X1
k , . . . , X

Nk

k by sampling from f(·, θk) := (1−λ)f(·, θk)+λf(·, θ0). Let

Λk := {X1
k , . . . , X

Nk

k }.
2. Performance Evaluation: Take Mk observations for every x ∈ Λk,

and calculate the sample average J̄k(x) = 1
Mk

∑Mk

i=1 Ji(x) for each x ∈
Λk, where Ji(x) is the ith i.i.d. observation of J (x, ψ).

3. Selecting Elite Samples: Select the elite candidate solutions among

Λk by calculating a threshold γ̄k; determine the sample size Nk+1 to be

used in the next iteration.

4. Parameter Updating: Update the new parameter θk+1 based on the

set of elite solutions by solving

(4) θk+1 = argmax
θ∈Θ

1

Nk

∑

x∈Λk

[S(J̄k(x))]k
f(x, θk)

χ
(
J̄k(x), γ̄k

)
ln f(x, θ),

where χ(y, γ) :=





0 if y ≤ γ − ε,
(y − γ + ε)/ε if γ − ε < y < γ,

1 if y ≥ γ.
5. Updating Counters: Set k ← k + 1.

Fig. 1. Stochastic Model Reference Adaptive Search

α > 1, specified initially, to control the rate of increase in {Nk, k = 0, 1 . . .}, and leave

the sequence {Mk, k = 0, 1, . . .} as user-specified. We impose the following regularity

condition on the observation allocation rule. The issue of how to determine the sample

size Nk is discussed in Section 2.2.3.

Assumption L2. The observation allocation rule {Mk, k = 0, 1, . . .} satisfies Mk ≥
Mk−1 ∀ k = 1, 2, . . ., and Mk → ∞ as k → ∞. Moreover, for any ǫ > 0,

there exist δǫ ∈ (0, 1) and Kǫ > 0 such that α2kφ(Mk−1, ǫ) ≤ (δǫ)
k, ∀ k ≥ Kǫ,

where φ(·, ·) is defined as in L1.

L2 is a mild condition and is very easy to verify. For instance, if φ(n, ǫ) takes the

form φ(n, ǫ) = C(ǫ)
n , where C(ǫ) is a constant depending on ǫ, then the condition

on Mk−1 becomes Mk−1 ≥ C(ǫ)(α
2

δǫ
)k ∀ k ≥ Kǫ. As another example, if Ji(x), i =
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1, 2 . . . satisfies the large deviations principle and φ(n, ǫ) = e−nC(ǫ), then the condition

becomes Mk−1 ≥
[
ln(α

2

δǫ
)/C(ǫ)

]
k, ∀ k ≥ Kǫ.

During the initialization step of SMRAS, a small positive number ε, a parameter

ρ ∈ (0, 1], and a strictly increasing function S(·) : ℜ → ℜ+ are also specified. The

parameters ε and ρ will be used to determine the set of promising solutions to be

used in parameter updating (see sections 2.2.3 and 2.2.4), and as discussed earlier,

the function S(·) is used to account for cases where J̄k(x) is negative for some x, and

thus to prevent negative probabilities.

2.2.2. Sampling Candidate Solutions and Performance Evaluation. At

each iteration k, Nk i.i.d. random samples are drawn from the density/mass function

f(·, θk), which is a mixture of the initial density f(·, θ0) and the density calculated

from the previous iteration f(·, θk). See for example, [5] for a similar idea in the

context of multiarmed bandit problems. The initial density f(·, θ0) can be chosen

according to some prior knowledge of the problem structure; however, if nothing is

known about where the good solutions are, this density should be chosen in such a way

that each region in the solution space will have an (approximately) equal probability

of being sampled. For example, if the solution space X is compact, then one possible

choice of f(·, θ0) is the uniform distribution. Intuitively, mixing in the initial density

enables the algorithm to explore the entire solution space and thus maintain a global

perspective during the search process.

Given Nk generated solutions Λk = {X1
k , . . . , X

Nk

k }, their true performances

J(X1
k), . . . , J(XNk

k ) are estimated in Step 2 by allocating Mk observations to each

x ∈ Λk, and then taking the sample average J̄k(x) = 1
Mk

∑Mk

i=1 Ji(x) ∀x ∈ Λk.

2.2.3. Selecting Elite Samples. In SMRAS, as in CE and many population-

based approaches such as genetic algorithms (GAs) (cf. e.g., [30]), only a portion of

the samples – the set of “elite” samples – are used to update the probability model.

This is achieved primarily by constructing a convergent sequence of thresholds {γ̄k}
based on quantile estimates of the performances of the current samples, and then

taking those samples that have performances better than these thresholds. The idea

is to concentrate the computational effort on the set of promising samples.

Another important issue is the choices of Nk, since both the theoretical con-

vergence and practical performance of the algorithm will depend on the number of

samples to be used at each iteration, but it is difficult to determine in advance the

appropriate number of samples. A sample size that is too small could lead to non-

convergence of the algorithm and result in poor quality solutions, whereas a sample

size that is too large may result in a waste of computational resources, especially in

settings where the sampling and/or simulation cost is relatively expensive.

We now provide a detailed implementation of Step 3, which generates a convergent

sequence of thresholds {γ̄k} and adaptively determines the number of samples Nk+1
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to be used in the next iteration.

Calculating Quantile Estimates: Order the sample performances J̄k(x), ∀x ∈ Λk

from the smallest to largest, J̄k,(1) ≤ J̄k,(2) ≤ · · · ≤ J̄k,(Nk), where J̄k,(i) repre-

sents the ith order statistic of the sequence {J̄k(x), ∀x ∈ Λk}. Take κ(ρ,Nk) :=

J̄k,(⌈(1−ρ)Nk⌉) as an estimate of the true (1 − ρ)-quantile of J(X) with respect to

f(·, θk), where ⌈a⌉ is the smallest integer greater than a. Here we use the notation

κ(ρ,Nk) to emphasize the dependencies of the sample quantile estimates on both ρ

and the sample size Nk.

Step 3a. If k = 0 (i.e., the first iteration) or κ(ρ,Nk) ≥ γ̄k−1 + ε, then use the

quantile estimate as the current threshold γ̄k = κ(ρ,Nk). Use an additional

random variable X∗
k to record the sample that achieves the threshold γ̄k by

setting X∗
k =

{
x ∈ Λk : J̄k(x) = κ(ρ,Nk)

}
. If more than one sample achieves

the threshold value, ties are broken arbitrarily.

Step 3b. Else find the largest ρ̄ ∈ (0, ρ) such that sample (1 − ρ̄)-quantile estimate

of the sequence {J̄k(x), x ∈ Λk} satisfies κ(ρ̄, Nk) ≥ γ̄k−1 + ε. Use κ(ρ̄, Nk)

as the current threshold, and set γ̄k = κ(ρ̄, Nk). Record the sample that

achieves the current threshold X∗
k =

{
x ∈ Λk : J̄k(x) = κ(ρ̄, Nk)

}
. Set

ρ = ρ̄.

Step 3c. Else if no such ρ̄ exists, then take Mk i.i.d. observations for X∗
k−1 (the

sample that achieves the previous threshold value), and set the current thresh-

old γ̄k = J̄k(X∗
k−1) = 1

Mk

∑Mk

i=1 Ji(X∗
k−1). Set X∗

k = X∗
k−1, and increase the

sample size by a factor α, Nk+1 = ⌈αNk⌉.

Thus, by construction, the random sequence {γ̄k} is (approximately) improving,

and each increment in the sequence (at steps 3a and 3b) is lower bounded by a

quantity ε. Intuitively, the primary reason for using the thresholds {γ̄k} in SMRAS is

that such an approach to selecting the elite samples will quickly direct the search of the

algorithm towards a sequence of “improving” regions, which could be more efficient

than simply using the sequence of quantile estimates or even a fixed threshold to

determine the elite samples (see also Remark 3). Note that in a deterministic setting,

i.e., J(x) can be evaluated exactly, Step 3 of SMRAS coincides with that of the

MRAS algorithm introduced in [19]. The convergence of the sequence {γ̄k} is a direct

consequence of the following lemma.

Lemma 2.1. If Assumptions L1 and L2 are satisfied, then the sequence of random

variables {X∗
k , k = 0, 1, . . .} generated by SMRAS converges w.p.1 as k →∞.

Proof. Let Ak be the event that Step 3a or 3b is visited at the kth iteration and

Bk =
{
J(X∗

k) − J(X∗
k−1) ≤ ε

2

}
. Since each time Step 3a or 3b is visited, we have

J̄k(X∗
k )−J̄k−1(X

∗
k−1) ≥ ε, X∗

k ∈ Λk, and X∗
k−1 ∈ Λi for some 0 ≤ i ≤ k−1, it follows

that
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P (Ak ∩ Bk) ≤ P
({
J̄k(X∗

k )− J̄k−1(X
∗
k−1) ≥ ε

}
∩

{
J(X∗

k )− J(X∗
k−1) ≤

ε

2

})

≤ P
( ⋃

x∈Λk,y∈Λi

{
J̄k(x)− J̄k−1(y) ≥ ε

}
∩

{
J(x) − J(y) ≤ ε

2

})

≤
∑

x∈Λk,y∈Λi

P
({
J̄k(x)− J̄k−1(y) ≥ ε

}
∩

{
J(x) − J(y) ≤ ε

2

})

≤ |Λk||Λi| sup
x,y∈X

P
({
J̄k(x)− J̄k−1(y) ≥ ε

}
∩

{
J(x)− J(y) ≤ ε

2

})

≤ |Λk||Λi| sup
x,y∈X

P
(
J̄k(x) − J̄k−1(y)− J(x) + J(y) ≥ ε

2

)

≤ 2|Λk||Λi|φ
(
min

{
Mk,Mk−1

}
,
ε

4

)
by Equation (2)

≤ 2α2kN2
0φ

(
Mk−1,

ε

4

)

≤ 2N2
0 (δε/4)

k, ∀ k ≥ Kε/4 by Assumption L2.

Therefore,

∞∑

k=1

P (Ak ∩ Bk) ≤ Kε/4 + 2N2
0

∞∑

k=Kε/4

(δε/4)
k ≤ ∞.

By the Borel-Cantelli lemma, we have

P (Ak ∩ Bk i.o.) = 0.

It follows that if Ak occurs infinitely often, then w.p.1, Bck will also occur infinitely

often. Thus,

∞∑

k=1

[
J(X∗

k )− J(X∗
k−1)

]
=

∑

k: Ak occurs

[
J(X∗

k )− J(X∗
k−1)

]

+
∑

k: Ac
k occurs

[
J(X∗

k )− J(X∗
k−1)

]
,

=
∑

k: Ak occurs

[
J(X∗

k )− J(X∗
k−1)

]

since X∗
k = X∗

k−1 if Step 3c is visited,

=
∑

k: Ak∩Bk occurs

[
J(X∗

k )− J(X∗
k−1)

]

+
∑

k: Ak∩Bc
k occurs

[
J(X∗

k )− J(X∗
k−1)

]
,

=∞ w.p.1 since ε > 0.

However, this is a contradiction, since J(x) is bounded from above by J(x∗). There-

fore, w.p.1,Ak can only occur a finite number of times, which implies that the sequence

{X∗
k , k = 0, 1, . . .} converges w.p.1.
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Now define γk = J(X∗
k ), i.e., the true performance of the random sample X∗

k .

Lemma 2.1 implies that the sequence {γk} converges. And it is easy to see that the

sequence of stochastic thresholds {γ̄k} is just a sample average approximation of the

sequence {γk}. As we will see, by using a slightly stronger condition than L2, we can

show that γ̄k not only converges to γk, but also does so at an exponential rate.

2.2.4. Parameter Updating. Given the performance threshold γ̄k, we can now

concentrate the computational effort of parameter updating (4) on the set of elite sam-

ples. This is carried out via the use of a filter-like function χ(·, γ̄k), which eliminates

from consideration those obviously inferior solutions having performance worse than

γ̄k− ε. Since all performance evaluations will contain some noise, χ(·, γ̄k) is chosen to

be a continuous function instead of the straightforward indicator function. The hope

is that such a continuous threshold function will provide some robustness, in the sense

that those solutions with true performance better than γ̄k but whose current estimates

are slightly worse than γ̄k (between γ̄k − ε and γ̄k) will still be included in parameter

updating. Thus, in the long run, as more precise performance estimates are obtained,

χ(·, γ̄k) ensures (with probability one) that all solutions with true performance better

than γ̄k will be used to calculate the new parameter θk+1.

It is important to note that in Step 4, the set
{
x ∈ Λk : J̄k(x) > γ̄k− ε

}
could be

empty, since it could happen that all the samples generated at the current iteration

are worse than those generated at the previous iteration. If this is the case, then by

the definition of χ(·, γ̄k), the right hand side of equation (4) will be equal to zero, so

any θ ∈ Θ is a maximizer; we define θk+1 = θk in this case.

We now show that there is a sequence of reference models {g̃k(·)} implicit in

SMRAS, and the parameter θk+1 computed at Step 4 indeed minimizes the KL-

divergence D(g̃k+1(·), f(·, θ)).

Lemma 2.2. The parameter θk+1 computed at the kth iteration of SMRAS min-

imizes the KL-distance D (g̃k+1(·), f(·, θ)), where

g̃k+1(x) :=





(
[S(J̄k(x))]k/f(x,θk)

)
χ(J̄k(x),γ̄k)

∑
x∈Λk

(
[S(J̄k(x))]k/f(x,θk)

)
χ(J̄k(x),γ̄k)

if
{
x ∈ Λk : J̄k(x) > γ̄k − ε

}
6= ∅,

g̃k(x) otherwise,

∀ k = 0, 1, . . . .(5)

Proof. We only need to consider the case where
{
x ∈ Λk : J̄k(x) > γ̄k − ε

}
6= ∅,

since if this is not the case, then we can always backtrack and find a g̃k(·) with

non-empty support.

For brevity, we define Sk(J̄k(x)) := [S(J̄k(x))]k

f(x,θk) . Note that at the kth iteration,
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the KL distance between g̃k+1(·) and f(·, θ) can be written as

D (g̃k+1(·), f(·, θ)) = Eg̃k+1
[ln g̃k+1(X)]− Eg̃k+1

[ln f(X, θ)]

= Eg̃k+1
[ln g̃k+1(X)]−

1
Nk

∑
x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
ln f(x, θ)

1
Nk

∑
x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

) ,

whereX is a random variable with distribution g̃k+1(·), and Eg̃k+1
[·] is the expectation

taken with respect to g̃k+1(·). Thus the proof is completed by observing that minimiz-

ing D (g̃k+1(·), f(·, θ)) is equivalent to maximizing the quantity 1
Nk

∑
x∈Λk

Sk(J̄k(x))
χ

(
J̄k(x), γ̄k

)
ln f(x, θ).

The distribution g̃k+1(·) is constructed based on the empirical performance of

the sampled solutions in Λk. Intuitively, it can be view as a “model” of our best

guess of the promising region {x ∈ Λk : J̄k(x) > γ̄k − ε}. However, such a model

is expensive to build and impractical to implement, because sampling from which

would always result in solutions from the same set of points Λk. In contrast, by

minimizing D(g̃k+1(·), f(·, θ)), we approximate g̃k+1(·) with a smooth distribution

function f(·, θk+1), which can be efficiently sampled from and represented relatively

compactly by its parameter. Moreover, there is no need to build g̃k+1(·) explicitly.

Remark 1: When the solution space is finite, it is often helpful to make efficient

use of the past sampling information. This can be achieved by maintaining a list of

all sampled candidate solutions (along with the number of observations made at each

of these solutions), and then check if a newly generated solution is in that list. If a

new solution at iteration k has already been sampled and, say Ml, observations have

been made, then we only need to take Mk −Ml additional observations from that

point. This procedure is often effective when the solution space is relatively small.

However, when the solution space is large, the storage and checking cost could be quite

expensive. In SMRAS, we propose an alternative approach: at each iteration k of the

method, instead of remembering all past samples, we only keep track of those samples

that fall in the region
{
x : J̄k(x) > γ̄k − ε

}
. As we will see, the sampling process will

become more and more concentrated on these regions; thus the probability of getting

repeated samples typically increases.

Remark 2: We have not provided a stopping rule for SMRAS; the discussion of this

issue is deferred to the end of the next section.

3. Convergence Analysis. Global convergence and computational efficiency

of SMRAS clearly depend on the choice of the parameterized family of distributions.

Throughout this paper, we restrict our discussion to the natural exponential family

(NEF), which works well in practice, and for which convergence properties can be

established.
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Definition 1. A parameterized family of pdfs {f(·, θ), θ ∈ Θ ⊆ ℜm} on X is

said to belong to the natural exponential family (NEF) if there exist functions ℓ(·) :

ℜn → ℜ, Γ(·) : ℜn → ℜm, and K(·) : ℜm → ℜ such that

(6) f(x, θ) = exp
{
θTΓ(x) −K(θ)

}
ℓ(x), ∀ θ ∈ Θ,

where K(θ) = ln
∫
x∈X

exp
{
θTΓ(x)

}
ℓ(x)ν(dx), and “T” denotes vector transposition.

For the case where f(·, θ) is a pdf, we assume that Γ(·) is a continuous mapping.

Many pdfs/pmfs can be put into the form of NEFs; some typical examples are

Gaussian, Poisson, binomial, geometric, and certain multivariate forms of them.

To establish the global convergence of SMRAS, we make the following additional

assumptions.

Assumptions:

A1. There exists a compact set Π such that for the sequence of random variables

{X∗
k , k = 0, 1, . . .} generated by SMRAS, ∃N < ∞ w.p.1 such that {x :

J(x) ≥ J(X∗
k )− ε} ∩ X ⊆ Π ∀ k ≥ N .

A2. For any constant ξ < J(x∗), the set {x : J(x) ≥ ξ} ∩ X has a strictly positive

Lebesgue or discrete measure.

A3. For any given constant δ > 0, supx∈Aδ
J(x) < J(x∗), where Aδ := {x : ‖x− x∗‖

> δ} ∩X, and we define the supremum over the empty set to be −∞.

A4. For each point z ≤ J(x∗), there exist ∆k > 0 and Lk > 0, such that
|(S(z))k−(S(z̄))k|

|(S(z))k|
≤ Lk|z − z̄| for all z̄ ∈ (z −∆k, z + ∆k).

A5. The maximizer of equation (4) is an interior point of Θ for all k.

A6. supθ∈Θ ‖ exp
{
θTΓ(x)

}
Γ(x)ℓ(x)‖ is integrable/summable with respect to x, where

θ, Γ(·), and ℓ(·) are defined in Definition 1.

A7. f(x, θ0) > 0 ∀x ∈ X and f∗ := infx∈Π f(x, θ0) > 0, where Π is defined in A1.

Since the sequence {X∗
k} generated by SMRAS converges (see Lemma 2.1), A1

requires that the search of SMRAS will eventually end up in a compact set. The

assumption is trivially satisfied if the solution space X is compact. Assumption A2

ensures that the neighborhood of the optimal solution x∗ will be sampled with a

strictly positive probability. Since x∗ is the unique global optimizer of J(·), A3 is

satisfied by many functions encountered in practice. A4 can be understood as a

locally Lipschitz condition on [S(·)]k; its suitability will be discussed later. In actual

implementation of the algorithm, (4) is often posed as an unconstrained optimization

problem, i.e., Θ = ℜm, in which case A5 is automatically satisfied. It is also easy to

verify that A6 and A7 are satisfied by most NEFs.

The following lemma shows the connection between the sequence of empirical ref-

erence models {g̃k(·)} (see equation (5)) and their compact approximations {f(·, θk)}.
Lemma 3.1. If assumptions A5 and A6 hold, then we have

Eθk+1
[Γ(X)] = Eg̃k+1

[Γ(X)] , ∀ k = 0, 1, . . . ,
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where Eθk+1
(·) and Eg̃k+1

(·) are the expectations taken with respect to the pdf/pmf

f(·, θk+1) and g̃k+1(·), respectively.

Proof. For the same reason as discussed in the proof of Lemma 2.2, we only need

to consider the case where
{
x ∈ Λk : J̄k(x) > γ̄k − ε

}
6= ∅. Define

Jk(θ) =
1

Nk

∑

x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
ln f(x, θ), where Sk(J̄k(x)) := [S(J̄k(x))]k

f(x,θk) .

Since f(·, θ) belongs to the NEF, we can write

Jk(θ) =
1

Nk

∑

x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
ln ℓ(x)

+
1

Nk

∑

x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
θTΓ(x)

− 1

Nk

∑

x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
ln

∫

y∈X

eθ
T Γ(y)ℓ(y)ν(dy).

Thus the gradient of Jk(θ) with respect to θ can be expressed as

∇θJk(θ) =
1

Nk

∑

x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
Γ(x)

−
∫
eθ

T Γ(y)Γ(y)ℓ(y)ν(dy)∫
eθT Γ(y)ℓ(y)ν(dy)

1

Nk

∑

x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
,

where the validity of the interchange of derivative and integral above is guaranteed by

Assumption A6 and the dominated convergence theorem. By setting ∇θJk(θ) = 0, it

follows that

1
Nk

∑
x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

)
Γ(x)

1
Nk

∑
x∈Λk

Sk(J̄k(x))χ
(
J̄k(x), γ̄k

) =

∫
eθ

T Γ(y)Γ(y)ℓ(y)ν(dy)∫
eθT Γ(y)ℓ(y)ν(dy)

,

which implies that Eg̃k+1
[Γ(X)] = Eθ [Γ(X)] by the definitions of gk(·) (cf. (5)) and

f(·, θ).
Since θk+1 is the optimal solution of the problem

argmax
θ∈Θ

Jk(θ),

we conclude that Eg̃k+1
[Γ(X)] = Eθk+1

[Γ(X)] , ∀ k = 0, 1, . . ., by A5.

Remark 3: Roughly speaking, the sequence of regions {x : J̄k(x) > γ̄k − ε}, k =

0, 1, 2 . . . tends to get smaller and smaller during the search process of SMRAS (since

{γ̄k} is approximately increasing). Lemma 3.1 shows that the sequence of sampling

distributions f(·, θk+1) is adapted to this sequence of shrinking regions. For example,
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consider the special case where {x : J̄k(x) > γ̄k − ε} is convex and Γ(x) = x. Since

Eg̃k+1
[X ] is a convex combination of X1

k , . . . , X
Nk

k , the lemma implies that Eθk+1
[X ] ∈

{x : J̄k(x) > γ̄k−ε}. Thus, it is natural to expect that the random samples generated

at the next iteration will fall in the region {x : J̄k(x) > γ̄k−ε} with large probabilities

(e.g., consider the normal distribution where its mean µk+1 = Eθk+1
[X ] is equal to

its mode value). In contrast, if we use a fixed sampling distribution for all iterations,

then sampling from this sequence of shrinking regions could be a substantially difficult

problem in practice.

We now define a sequence of (idealized) pdfs/pmfs {gk(·)} as

(7) gk+1(x) =
[S(J(x))]k χ(J(x), γk−1)∫

x∈X
[S(J(x))]k χ(J(x), γk−1)ν(dx)

∀ k = 1, 2, . . . ,

where recall that γk−1 = J(X∗
k−1). Note that sinceX∗

k−1 is a random variable, gk+1(x)

is also random.

The outline of the convergence proof is as follows: first we establish the con-

vergence of the sequence of idealized distributions {gk(·)}, then we claim that the

reference models {g̃k(·)} are in fact the sample average approximations of the se-

quence {gk(·)} by showing that Eg̃k
[Γ(X)] → Egk

[Γ(X)] w.p.1 as k → ∞. Thus, the

convergence of the sequence {f(·, θk)} follows immediately from Lemma 3.1.

The convergence of the sequence {gk(·)} is formalized in the following lemma.

Lemma 3.2. If Assumptions L1−L2, A1−A3 are satisfied, then

lim
k→∞

Egk
[Γ(X)] = Γ(x∗) w.p.1.

Proof. Our proof is an extension of the proof of Theorem 1 in [19]. Let Ω1 be the

set of all sample paths such that Step 3a or 3b of SMRAS is visited finitely often, and

let Ω2 be the set of sample paths such that limk→∞{x : J(x) ≥ γk − ε} ∩ X ⊆ Π. By

Lemma 2.1, we have P (Ω1) = 1, and for each ω ∈ Ω1, there exists a finite N (ω) > 0

such that

X∗
k(ω) = X∗

k−1(ω) ∀ k ≥ N (ω),

which implies that γk(ω) = γk−1(ω) ∀ k ≥ N (ω). Furthermore, by A1, we have

P (Ω2) = 1 and {x : J(x) ≥ γk−1(ω)− ε} ∩ X ⊆ Π, ∀ k ≥ N (ω) ∀ω ∈ Ω1 ∩ Ω2.

Thus, for each ω ∈ Ω1∩Ω2, it is not difficult to see from equation (7) that gk+1(·)
can be expressed recursively as

gk+1(x) =
S(J(x))gk(x)

Egk
[S(J(X))]

, ∀ k > N (ω),

where we have used gk(·) instead of gk(ω)(·) to simplify the notation. It follows that

(8) Egk+1
[S(J(X))] =

Egk
[S2(J(X))]

Egk
[S(J(X))]

≥ Egk
[S(J(X))] , ∀ k > N (ω),
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which implies that the sequence {Egk
[J(X)], k = 2, 3, . . .} converges (note that

Egk
[J(X)] is bounded from above by J(x∗)).

Now we show that the limit of the above sequence is S(J(x∗)). To show this, we

proceed by contradiction and assume that

lim
k→∞

Egk
[S(J(X))] = S∗ < S∗ := S(J(x∗)).

Define the set C := {x : J(x) ≥ γN (ω) − ε} ∩ {x : S(J(x)) ≥ S∗+S∗

2 } ∩ X. Since

S(·) is strictly increasing, its inverse S−1(·) exists, thus C can be formulated as C ={
x : J(x) ≥ max{γN (ω) − ε, S−1(S

∗+S∗

2 )}
}
∩ X. By A2, C has a strictly positive

Lebesgue/discrete measure.

Note that gk+1(·) can be written as

gk+1(x) =

[
k∏

i=N (ω)+1

S(J(x))

Egi [S(J(X))]

]
· gN (ω)+1(x), ∀ k > N (ω).

Since limk→∞
S(J(x))

Egk
[S(J(X))] = S(J(x))

S∗

> 1, ∀x ∈ C, we conclude that

lim inf
k→∞

gk(x) =∞, ∀x ∈ C.

We have, by Fatou’s lemma,

1 = lim inf
k→∞

∫

X

gk+1(x)ν(dx) ≥ lim inf
k→∞

∫

C

gk+1(x)ν(dx) ≥
∫

C

lim inf
k→∞

gk+1(x)ν(dx) =∞,

which is a contradiction. Hence, it follows that

(9) lim
k→∞

Egk
[S(J(X))] = S∗, ∀ω ∈ Ω1 ∩ Ω2.

We now bound the difference between Egk+1
[Γ(X)] and Γ(x∗). We have

‖Egk+1
[Γ(X)]− Γ(x∗)‖ ≤

∫

x∈X

‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx)

=

∫

G

‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx),(10)

where G :=
{
x : J(x) ≥ γN (ω) − ε

}
∩ X is the support of gk+1(·), ∀ k > N (ω).

By the assumption on Γ(·) in Definition 1, for any given ζ > 0, there exists a

δ > 0 such that ‖x − x∗‖ ≤ δ implies ‖Γ(x) − Γ(x∗)‖ ≤ ζ. Let Aδ be defined as in

A3; then we have from (10)

‖Egk+1
[Γ(X)]− Γ(x∗)‖ ≤

∫

Ac
δ∩G

‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx)

+

∫

Aδ∩G

‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx)

≤ ζ +

∫

Aδ∩G

‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx), ∀ k > N (ω).(11)
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The rest of the proof amounts to showing that the second term in (11) is also bounded.

Clearly by A1, the term ‖Γ(x)− Γ(x∗)‖ is bounded on the set Aδ ∩ G. We only need

to find a bound for gk+1(x).

By A3, we have

sup
x∈Aδ∩G

J(x) ≤ sup
x∈Aδ

J(x) < J(x∗).

Define Sδ := S∗−S(supx∈Aδ
J(x)). And by the monotonicity of S(·), we have Sδ > 0.

It is easy to see that

(12) S(J(x)) ≤ S∗ − Sδ, ∀x ∈ Aδ ∩ G.

From (8) and (9), there exists N̄ (ω) ≥ N (ω) such that for all k ≥ N̄ (ω)

(13) Egk+1
[S(J(X))] ≥ S∗ − 1

2
Sδ.

Observe that gk+1(x) can be rewritten as

gk+1(x) =

[
k∏

i=N̄

S(J(x))

Egi [S(J(X))]

]
· gN̄ (x), ∀ k ≥ N̄ (ω).

Thus, it follows from (12) and (13) that

gk+1(x) ≤
( S∗ − Sδ
S∗ − 1

2Sδ

)k−N̄+1

· gN̄ (x), ∀x ∈ Aδ ∩ G, ∀ k ≥ N̄ (ω).

Therefore,

‖Egk+1
[Γ(X)]− Γ(x∗)‖ ≤ ζ + sup

x∈Aδ∩G
‖Γ(x)− Γ(x∗)‖

∫

Aδ∩G

gk+1(x)ν(dx)

≤ ζ + sup
x∈Aδ∩G

‖Γ(x)− Γ(x∗)‖
( S∗ − Sδ
S∗ − 1

2Sδ

)k−N̄+1

, ∀ k ≥ N̄ (ω)

≤
(
1 + sup

x∈Aδ∩G
‖Γ(x)− Γ(x∗)‖

)
ζ, ∀ k ≥ N̂ (ω),

where N̂ (ω) is given by N̂ (ω) := max
{
N̄ (ω), ⌈N̄ (ω)− 1 + ln ζ/ ln

(
S∗−Sδ

S∗− 1
2
Sδ

)
⌉
}
.

Since ζ is arbitrary, we have

lim
k→∞

Egk
[Γ(X)] = Γ(x∗), ∀ω ∈ Ω1 ∩ Ω2.

And since P (Ω1 ∩ Ω2) = 1, the proof is thus completed.

The rest of the convergence proof now amounts to showing that Eg̃k
[Γ(X)] →

Egk
[Γ(X)] w.p.1 as k → ∞. However, there is one more complication: Since S(·)

is an increasing function and is raised to the kth power in both g̃k+1(·) and gk+1(·)
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(see equations (5), (7)), the associated estimation error between J̄k(x) and J(x) is

exaggerated. Thus, even though we have limk→∞ J̄k(x) = J(x) w.p.1, the quantities

[S(J̄k(x))]k and [S(J(x))]k may still differ considerably as k gets large. Therefore, the

sequence {J̄k(x)} not only has to converge to J(x), but it should also do so at a fast

enough rate in order to keep the resultant approximation error between Sk(J̄k(x))
and Sk(J(x)) at a manageable level. This requirement is summarized in the following

assumption.

Assumption L3. For any given ζ > 0, there exist δ∗ ∈ (0, 1) and K > 0 such that

the observation allocation rule {Mk, k = 1, 2 . . .} satisfies

αkφ
(
Mk,min

{
∆k,

ζ

αk/2
,

ζ

αk/2Lk

})
≤ (δ∗)k ∀ k ≥ K,

where φ(·, ·) is defined as in L1, ∆k and Lk are defined as in A4.

Let S(z) = eτz, for some positive constant τ . We have Sk(z) = eτkz and [Sk(z)]′ =

kτeτkz. It is easy to verify that |Sk(z)−Sk(z̄)|
Sk(z)

≤ kτeτk∆k |z− z̄| ∀ z̄ ∈ (z−∆k, z+ ∆k),

and A4 is satisfied for ∆k = 1/k and Lk = τeτk. Thus, the condition in L3 becomes

αkφ(Mk, ζ̄/α
k/2k) ≤ (δ∗)k ∀ k ≥ K, where ζ̄ = ζ/τeτ . We consider the following two

special cases of L3. Let Ji(x) be i.i.d. with E(Ji(x)) = J(x) and uniformly bounded

variance supx∈X
σ2(x) ≤ σ2. By Chebyshev’s inequality

P
(∣∣J̄k(x) − J(x)

∣∣ ≥ ζ̄

αk/2k

)
≤ σ2αkk2

Mkζ̄2
.

Thus, it is easy to check that L3 is satisfied by Mk = (ηα2)k for any constant η > 1.

As a second example, consider the case where J1(x), . . . ,JNk
(x) are i.i.d. with

E(Ji(x)) = J(x) and bounded support [a, b]. By the Hoeffding inequality [16]

P
(∣∣J̄k(x) − J(x)

∣∣ ≥ ζ̄

αk/2k

)
≤ 2 exp

( −2Mkζ̄
2

(b − a)2αkk2

)
.

In this case, L3 is satisfied by Mk = (ηα)k for any constant η > 1.

We note that Assumption L3 can be replaced by the weaker condition

∞∑

k=1

φ
(
Mk,min

{
∆k,

ζ

αk/2
,

ζ

αk/2Lk

})
<∞

when the solution space X is finite.

The following result shows that under Assumption L3, the stochastic threshold

γ̄k converges to γk exponentially fast, whose proof can be found in [7].

Proposition 3.1. If Assumptions L1−L3 are satisfied, then

lim
k→∞

αk/2
∣∣γ̄k − γk

∣∣ = 0 w.p.1.

We are now ready to state the main theorem.
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Theorem 1. Let ϕ be a positive constant satisfying the condition that the set{
x : S(J(x)) ≥ 1

ϕ

}
has a strictly positive Lebesgue/counting measure. If assumptions

L1−L3, A1−A7 are satisfied and α > (ϕS∗)2, where S∗ = S(J(x∗)), then

(14) lim
k→∞

Eθk
[Γ(X)] = Γ(x∗) w.p.1,

where the limit above is component-wise.

Remark 4: By the monotonicity of S(·) and Assumption A2, it is easy to see that

such a positive constant ϕ in Theorem 1 always exists. Moreover, for continuous

problems, ϕ can be chosen such that ϕS∗ ≈ 1; for discrete problems, if the counting

measure is used, then we can choose ϕ = 1/S∗.

Remark 5: Note that when Γ(x) is a one-to-one function (which is the case for many

NEFs used in practice), the above result can be equivalently written as

Γ−1

(
lim
k→∞

Eθk
[Γ(X)]

)
= x∗.

Also note that for some particular pdfs/pmfs, the solution vector x itself will be a

component of Γ(x) (e.g., multivariate normal pdf), in which case (14) is equivalent to

limk→∞ Eθk
[X ] = x∗, i.e., the mean of the sampling distribution converges to the op-

timal solution x∗. Another special case of particular interest is when the components

of the random vector X = (X1, . . . , Xn) are independent, and each has a univariate

pdf/pmf of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))ℓ(xi), ϑi ⊂ ℜ, ∀ i = 1, . . . , n.

In this case, since the distribution of the random vector X is simply the product

of the marginal distributions, we have Γ(x) = x. Thus, (14) is again equivalent to

limk→∞ Eθk
[X ] = x∗, where θk := (ϑk1 , . . . , ϑ

k
n), and ϑki is the value of ϑi at the kth

iteration of the algorithm.

Proof. As mentioned earlier, the convergence proof amounts to showing that

Eg̃k+1
[Γ(X)]→ Egk+1

[Γ(X)] w.p.1 as k →∞, and then directly applying Lemma 3.1

and 3.2. The proof of Eg̃k+1
[Γ(X)]→ Egk+1

[Γ(X)] can be found in [7].

We now address some of the special cases discussed in Remark 5; the proofs are

straightforward and hence omitted.

Corollary 1. (Multivariate Normal) For continuous optimization problems

in ℜn, if multivariate normal pdfs are used in SMRAS, i.e.,

f(x, θk) =
1√

(2π)n|Σk|
exp

(
− 1

2
(x− µk)TΣ−1

k (x− µk)
)
,

where θk := (µk; Σk), assumptions L1− L3, A1 −A5 are satisfied, and α > (ϕS∗)2,

then

lim
k→∞

µk = x∗, and lim
k→∞

Σk = 0n×n w.p.1,
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where 0n×n represents an n-by-n zero matrix.

Corollary 2. (Independent Univariate) If the components of the random

vector X = (X1, . . . , Xn) are independent, each has a univariate pdf/pmf of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))ℓ(xi), ϑi ⊂ ℜ, ∀ i = 1, . . . , n,

assumptions L1− L3, A1−A7 are satisfied, and α > (ϕS∗)2, then

lim
k→∞

Eθk
[X ] = x∗ w.p.1, where θk := (ϑk1 , . . . , ϑ

k
n).

Remark 6 (Stopping Rule): We now return to the issue of designing a valid

stopping rule for SMRAS. In practice, this can be achieved in many different ways.

The simplest method is to stop the algorithm when the total computational budget

is exhausted or when a prescribed maximum number of iterations is reached. Since

Proposition 3.1 indicates that the sequence {γ̄k, k = 0, 1, . . .} generated by SMRAS

converges, an alternative stopping criteria could be based on identifying whether the

sequence has settled down to its limit value. To do so, we consider the moving average

process {Υ(l)
k } defined as follows

Υ
(l)
k :=

1

l

k∑

i=k−l+1

γ̄i, ∀ k ≥ l− 1,

where l ≥ 1 is a predefined constant. It is easy to see that an unbiased estimator of

the sample variance of Υ
(l)
k is

ṽar(Υ
(l)
k ) :=

∑k
i=k−l+1[γ̄i −Υ

(l)
k ]2

l(l − 1)
,

which approaches zero as the sequence {γ̄k} approaches its limit. Thus, a reasonable

approach in practice is to stop the algorithm when the value of ṽar(Υ
(l)
k ) falls below

some pre-specified tolerance level, i.e., ∃ k > 0 such that ṽar(Υ
(l)
k ) ≤ τ , where τ > 0

is the tolerance level.

4. Numerical Examples. In this section, we test the performance of SMRAS

on several continuous and combinatorial optimization problems. In the former case,

we first illustrate the global convergence of SMRAS by testing the algorithm on four

multi-extremal functions; then we apply the algorithm to an inventory control prob-

lem. In the latter case, we consider the problem of optimizing the buffer allocations

in a tandem queue with unreliable servers, which has been previously studied in e.g.,

[1] and [31] .

We begin with some implementation issues of SMRAS.

1. Since SMRAS was presented in a maximization context, the following slight

modifications are required before it can be applied to minimization problems:
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(i) S(·) needs to be initialized as a strictly decreasing function instead of

strictly increasing. Throughout this section, we take S(z) := erz for maxi-

mization problems and S(z) := e−rz for minimization problems, where r > 0

is some predefined constant. (ii) The sample (1−ρ)-quantile κ(ρ,Nk) will now

be calculated by first ordering the sample performances J̄k(X i
k), i = 1, . . . , Nk

from largest to smallest, and then taking the ⌈(1 − ρ)Nk⌉th order statistic.

(iii) The threshold function should now be modified as

χ(y, γ) =





0 if y ≥ γ + ε,

(γ + ε − y)/ε if γ < y < γ + ε,

1 if y ≤ γ.

(iv) The inequalities at steps 3a and 3b need to be replaced with κ(ρ,Nk) ≤
γ̄k−1 − ε and κ(ρ̄, Nk) ≤ γ̄k−1 − ε, respectively.

2. In actual implementation of SMRAS, a smoothed parameter updating proce-

dure (cf. e.g. [9], [24]) is used, i.e., first a smoothed parameter vector θ̂k+1 is

computed at each iteration k according to

θ̂k+1 := υ θk+1 + (1 − υ)θ̂k, ∀ k = 0, 1, . . . , and θ̂0 := θ0,

where θk+1 is the parameter vector derived at Step 4 of SMRAS, and υ ∈ (0, 1]

is the smoothing parameter, then f(x, θ̂k+1) (instead of f(x, θk+1)) is used in

Step 1 to generate new samples. Although this modification will not affect

the theoretical convergence results, it may improve the empirical performance

of the algorithm.

4.1. Continuous Optimization. For continuous problems, we use multivariate

normal pdfs as the parameterized probabilistic model. Initially, a mean vector µ0 and

a covariance matrix Σ0 are specified; then at each iteration of the algorithm, it is easy

to see that the new parameters µk+1 and Σk+1 are updated according to the following

formula:

µk+1 =
1
Nk

∑
x∈Λk

Sk(J̄k(x))χ(J̄k(x), γ̄k)x
1
Nk

∑
x∈Λk

Sk(J̄k(x))χ(J̄k(x), γ̄k)
,

and

Σk+1 =
1
Nk

∑
x∈Λk

Sk(J̄k(x))χ(J̄k(x), γ̄k)(x− µk+1)(x − µk+1)
T

1
Nk

∑
x∈Λk

Sk(J̄k(x))χ(J̄k(x), γ̄k)
.

By Corollary 1, the sequence of mean vectors {µk} will converge to the optimal

solution x∗ and the sequence of covariance matrices {Σk} to the zero matrix. In

subsequent numerical experiments, we will use µk+1 to represent the current best

solution found at iteration k.
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4.1.1. Global Convergence. To demonstrate the global convergence of SM-

RAS, we consider four multi-extremal test functions with additive noise, where the

noise ψ is normally distributed with mean 0 and variance 100. The graphical repre-

sentations of the deterministic versions of these functions in two dimensions are given

in Figure 2.

(1) Goldstein-Price function with additive noise

J1(x, ψ) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))

(30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)) + ψ,

where −3 ≤ xi ≤ 3, i = 1, 2. The function J1(x) = Eψ [J1(x, ψ)] has four

local minima and a global minimum at x∗ = (0,−1)T , J1(x
∗) = 3.

(2) Rosenbrock function with additive noise (n = 5)

J2(x, ψ) =

n−1∑

i=1

100(xi+1 − x2
i )

2 + (xi − 1)2 + 1 + ψ,

where −10 ≤ xi ≤ 10, i = 1, . . . , n. Its deterministic counterpart J2(x) =

Eψ[J2(x, ψ)] is widely used to test the performance of different global opti-

mization algorithms. The function has a global minimum at x∗ = (1, . . . , 1)T ,

J2(x
∗) = 1.

(3) Pintér’s function with additive noise (n = 5)

J3(x, ψ) =

n∑

i=1

ix2
i +

n∑

i=1

20i sin2
(
xi−1 sinxi − xi + sinxi+1

)

+

n∑

i=1

i log10

(
1 + i(x2

i−1 − 2xi + 3xi+1 − cosxi + 1)2
)

+ 1 + ψ,

where x0 = xn, xn+1 = x1, −10 ≤ xi ≤ 10, i = 1, . . . , n, x∗ = (0, . . . , 0)T ,

J3(x
∗) = 1.

(4) Griewank function with additive noise (n = 10)

J4(x) =
1

40

n∑

i=1

x2
i −

n∏

i=1

cos
( xi√

i

)
+ 2 + ψ,

where −10 ≤ xi ≤ 10, i = 1, . . . , n, x∗ = (0, . . . , 0)T , J4(x
∗) = 1.

For all four problems, the same set of parameters are used to test SMRAS: r =

0.01, ε = 0.01, mixing coefficient λ = 0.01, initial sample size N0 = 500, initial

ρ = 0.1, α = 1.04, and the observation allocation rule is Mk = ⌈1.05Mk−1⌉ with

M0 = 10, the smoothing parameter υ = 0.5, the initial mean vector µ0 is an n-by-1

vector with each component uniformly selected from the interval [−3, 3] for J1 and

from [−10, 10] for J2, J3, and J4, and Σ0 is initialized as a n-by-n diagonal matrix

with all diagonal elements equal to 100, where n is the dimension of the problem.
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Fig. 2. Test functions (deterministic version) in two dimensions, (a) J1: Goldstein-Price; (b)

J2: Rosenbrock; (c) J3: Pintér; (d) J4: Griewank.

Note that if the random observations obey the large deviations principle, then α and

Mk satisfy the relevant conditions in Theorem 1. We refer the readers to [19] for a

discussion of general guidelines for selecting r and υ.

For numerical comparison purposes, we also applied the simultaneous perturba-

tion stochastic approximation (SPSA) algorithm [29] and the simulated annealing

(SA) algorithm [8] to all test cases. In SPSA, the gradient is estimated by averaging q

independent simultaneous perturbation approximations at each iteration, and when-

ever the update results in a solution that violates the constraint, we simply project

the solution back into the feasible region. In our experiments, we choose q = 1,

i.e., the algorithm requires only two measurements of the objective function at each

iteration. We have also used a standard gain sequence ak = 1/k and a step-size se-

quence ck = 1/(c + k)0.25, where k = 1, 2, . . . is the iteration counter, c = 5 × 104

for J1 and J2, and c = 5 × 102 for J3 and J4. The SA algorithm we have considered

is a simple stochastic version of standard SA, where each time the algorithm visits

a solution, we allocate L independent simulation observations to that solution, es-

timate the performance of that solution by averaging over L replications, and then

use standard SA to solve the underlying problem. We have used the following set of

parameters: L = 50, initial temperature T = 5 × 104, annealing factor rT = 0.85,
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and the neighborhood of a solution x to be searched at each iteration is taken to be

N (x) = {y : max1≤i≤n |x − y| ≤ 0.5}. For both SPSA and SA, the initial solution is

uniformly selected from [−3, 3]n for J1, and from [−10, 10]n for J2, J3, and J4.

For each function, we performed 100 independent simulation runs of all three

algorithms. The numerical results are reported in Table 1, where J̄i, i = 1, 2, 3, 4

are the averaged function values Ji evaluated at the final solutions found by the

algorithms, and the corresponding optimal values J∗
i are also included for reference.

Our performance comparison is based on the same amount of simulation effort, where

the total number of allowed function measurements is set to 3 × 105 for J1 and J3,

2×106 for J2, and 106 for J4. In Figure 3, we also plotted the average function values

of the current solutions as a function of the number of function measurements.

Numerical results indicate convergence of all three algorithms. Since SPSA uses

gradient information, it may quickly locate a local optimum by using only a small

number of function measurements. However, depending on the initial solutions used,

the algorithm may converge to solutions that are far from optimal. Since SA permits

uphill moves, it has the capability to escape from local optimal solutions. Therefore,

except for the J2 case (which is often considered as a unimodal function), SA generally

yields better performance than SPSA does in the long run. SMRAS consistently

outperforms SA in all test cases, and finds better solutions than SPSA does when the

number of function measurements is large enough.

Table 1

Performance of SMRAS, SPSA, and SA on benchmark problems J1−J4, based on 100 inde-

pendent simulation runs. The standard errors are in parentheses.

Algorithm J̄1(std err) J∗
1 J̄2(std err) J∗

2 J̄3(std err) J∗
3 J̄4(std err) J∗

4

SMRAS 3.12(0.01) 3 1.37(0.02) 1 1.60(0.03) 1 1.75(0.03) 1

SPSA q = 1 31.2(11.7) 3 2.02(0.20) 1 116.4(6.1) 1 6.54(0.15) 1

SA 18.8(3.2) 3 4.21(0.22) 1 14.2(1.5) 1 3.89(0.09) 1

4.1.2. An Inventory Control Example. To further illustrate the algorithm,

we consider an (s, S) inventory control problem with i.i.d. exponentially distributed

continuous demands, zero order lead times, full backlogging of orders, and linear

ordering, holding and shortage costs. The inventory level is periodically reviewed,

and an order is placed when the inventory position (on hand plus that on order) falls

below the level s, and the amount of the order is the difference between S and the

current inventory position. Formally, we let Dt denote the demand in period t, Xt

the inventory position in period t, p the per period per unit demand shortage penalty

cost, h the per period per unit inventory holding cost, c the per unit ordering cost,

and K the set-up cost per order. The inventory position {Xt} evolves according to
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Fig. 3. Performance of SMRAS, SPSA, and SA on (a) Goldstein-price function; (b) 5-D

Rosenbrock function; (c) 5-D Pintér function; (d) 10-D Griewank function.

the following dynamics

Xt+1 =

{
S −Dt+1 Xt < s,

Xt −Dt+1 Xt ≥ s.

The goal is to choose the thresholds s and S such that the long-run average cost per

period is minimized, i.e.,

(s∗, S∗) = argminJ(s, S) := argmin lim
t→∞

Jt(s, S),

where Jt(s, S) := 1
t

∑t
i=1

[
I{Xi < s}(K + c(S −Xi)) + hX+

i + pX−
i

]
, x+ = max(0,

x), and x− = max(0,−x). Note that the above objective function is convex; thus

a natural choice of comparison algorithm is a gradient-based algorithm like SPSA.

However, we will not exploit this structure in SMRAS.

The following four test cases, taken from [11], are used to test the performance

of SMRAS and SPSA. The cost coefficients and the analytical optimal solutions are

given in Table 2, each with c = h = 1 and exponentially distributed demands with

mean E[D].
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Table 2

The four test cases.

Case E[D] p K J∗ s∗ S∗

1 200 10 100 740.9 341 541

2 200 10 10000 2200.0 0 2000

3 200 100 100 1184.4 784 984

4 200 100 10000 2643.4 443 2443

In our simulation experiments with SMRAS, the initial mean vector is uniformly

selected from [0, 2000]× [0, 4000] for all four cases, and the covariance matrices are

initialized as diagonal matrices with all diagonal elements equal to 106. The other

parameters are: r = 0.01, ε = 0.01, λ = 0.01, N0 = 100, initial ρ = 0.1, α = 1.04,

Mk = ⌈1.05Mk−1⌉ with M0 = 10, smoothing parameter υ = 0.5. For SPSA, we have

considered two cases: q = 1 and q = 10, where in both cases, the initial solutions

are uniformly selected from [0, 2000]× [0, 4000], and a gain sequence ak = 200/k and

a step-size sequence ck = 200/k0.25 are used, which give reasonable performance for

different starting values. In both SMRAS and SPSA, the average cost per period is

estimated by averaging the accumulated cost over 50 periods after a warm-up length

of 50 periods.

The average performances of both algorithms for all test cases are given in Ta-

ble 3, where Np indicates the total number of periods (including the warm-up periods)

simulated, and the entries represent the averaged function values J of the final sample

solutions obtained for different choices of Np, each based on 30 independent simula-

tion replications. Since SPSA (q = 10) uses more precise gradient estimates, it can

generally produce better solutions than SPSA (q = 1) within the same number of

algorithm iterations. However, the performance gain of q = 10 over q = 1 is compro-

mised by the additional simulation effort required in estimating the gradient, in the

sense that for a fixed simulation budget, the solutions found by SPSA (q = 10) are

actually worse than those found by SPSA (q = 1). SMRAS does not explicitly exploit

the gradient structure, however, the algorithm still does very well as compared to an

algorithm designed for convex problems and that utilizes the gradient information.

We see that in all four cases, SMRAS provides superior empirical performance over

SPSA, and finds solutions that are reasonably close to the optimal solution. Moreover,

the algorithm also shows a significant variance reduction over SPSA.

4.2. Combinatorial Optimization. To illustrate the performance of SMRAS

on discrete problems, we consider the buffer allocation problem in a service facility

with unreliable servers. The system consists of m servers in series, which are sep-

arated by m − 1 buffer locations. Each job enters the system from the first server,

goes through all intermediate servers and buffer locations in a sequential order, and
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Table 3

Performance of SMRAS and SPSA on four test cases, based on 30 independent simulation

runs. The standard errors are in parentheses.

finally exits from the last server. The service times at each server are independent

exponentially distributed with service rate µi, i = 1, . . . ,m. The servers are assumed

to be unreliable, and are subject to random failures. When a server fails, it has to

be repaired. The time to failure and the time for repair are both i.i.d. exponentially

distributed with respective rates fi and ri, i = 1, . . . ,m. A server is blocked when the

buffer associated with the server coming next to it is full and is starved when no jobs

are offered to it. Thus, the status of a server (busy/broken) will affect the status of

all other servers in the system. We assume that the failure rate of each server remains

the same, regardless of its current status. Given n limited buffer spaces, our goal is

to find an optimal way of allocating these n spaces to the m− 1 buffer locations such

that the throughput (average production rate) is maximized.

When applying SMRAS, we have used the same technique as in [1] to generate

admissible buffer allocations; the basic idea is to use an (m− 1)-by-(n+ 1) matrix P ,

whose (i, j)th entry specifies the probability of allocating j − 1 buffer spaces to the

ith buffer location, and then generate allocations according to P . Please refer to their

paper for a detailed discussion on how to generate admissible allocations. We define

an allocation scheme x as an (m−1)-by-1 vector, whose ith element x(i) specifies the

number of buffer spaces allocated to the ith location. Thus, when parameterized by

P , the probability of generating x is

f(x, P ) =

m−1∏

i=1

n+1∏

j=1

(Pi,j)
I{x∈Xi,j} =

m−1∏

i=1

e(θ
i)T Γi(x),

where Xi,j represents the set of allocation schemes in which j − 1 buffer spaces are

allocated to the ith buffer location, θi = [lnPi,0, . . . , lnPi,n]T , and Γi(x) = [I{x ∈
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Xi,0}, . . . , I{x ∈ Xi,n}]T . Once the admissible allocations are generated, it is not

difficult to see that the entries of the matrix P are updated at the kth iteration as

P k+1
i,j =

∑
x∈Λk

Sk(J̄k(x))χ(J̄k(x), γ̄k)I{x ∈ Xi,j}∑
x∈Λk

Sk(J̄k(x))χ(J̄k(x), γ̄k)
,

where Λk = {X1
k , . . . , X

Nk

k } is the set of Nk admissible buffer allocations generated,

and J̄k(x) is the average throughput obtained via simulation when the allocation x is

used. It is not difficult to see that a straightforward interpretation of Theorem 1 yields

limk→∞ P ki,j = I{x∗ ∈ Xi,j} ∀ i = 1, . . . ,m − 1, ∀ j = 1, . . . , n + 1, which indicates

that the sequence of stochastic matrices {P k} will converge to a matrix P ∗ with all

mass at the optimal allocation scheme x∗, i.e., P ∗
i,j = 1 for j = x∗(i) + 1 and P ∗

i,j = 0

for all j 6= x∗(i) + 1, i = 1, . . . ,m− 1.

For the numerical experiments, we consider two cases: (i) m = 3, n = 1, . . . , 10,

µ1 = 1, µ2 = 1.2 µ3 = 1.4, failure rates fi = 0.05 and repair rates ri = 0.5 for all

i = 1, 2, 3; (ii) m = 5, n = 1, . . . , 10, µ1 = 1, µ2 = 1.1, µ3 = 1.2, µ4 = 1.3, µ5 = 1.4,

fi = 0.05 and ri = 0.5 for all i = 1, . . . , 5.

Apart from their combinatorial nature, an additional difficulty in solving these

problems is that different buffer allocation schemes (samples) have similar perfor-

mances. Thus, when only noisy observations are available, it could be very difficult

to identify the best allocation from a set of candidate allocation schemes. Because of

this, in SMRAS we have used a relatively large r = 2.3. The other parameters are

as follows: ε = 0.001, λ = 0.01, initial sample size N0 = 10 for case (i) and N0 = 20

for case (ii), initial ρ = 0.1, α = 1.2, observation allocation rule Mk = ⌈1.5Mk−1⌉
with M0 = 1, the stopping control parameters τ = 1e− 4 and l = 5 (see Remark 6),

smoothing parameter υ = 0.7, and the initial P 0 is taken to be a uniform matrix with

each column sum equal to one, i.e., P 0
i,j = 1

n+1 ∀ i, j. We start all simulation replica-

tions with the system empty. The steady-state throughputs are simulated after 100

warm-up periods, and then averaged over the subsequent 900 periods. Note that we

have employed the sample reuse procedure (cf. Remark 1) in actual implementation

of the algorithm.

Tables 4 and 5 give the performances of SMRAS for each of the respective cases

(i) and (ii). In each table, Navg is the averaged number of simulations over 16

independent trials, Alloc is the true optimal allocation scheme and NA∗ is the number

of times the optimal allocation was found out of 16 runs, T̄ is the averaged throughput

value calculated by the algorithm, and T ∗ represents the exact optimal solution (cf.

[31]). We see that in both cases, SMRAS produces very accurate solutions while using

only a small number of simulations.

5. Conclusions and Future Research. We have proposed a Stochastic Model

Reference Adaptive Search (SMRAS) for solving both continuous and discrete stochas-

tic global optimization problems. The method generalizes the MRAS method for de-
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Table 4

Performance of SMRAS on the buffer allocation problems case (i), based on 16 independent

simulation runs. The standard errors are in parentheses.

n Navg(std err) Alloc (NA∗) T̄ (std err) T ∗

1 33.1(4.9) [1,0] (16) 0.634(4.06e-4) 0.634

2 46.8(3.2) [1,1] (16) 0.674(6.35e-4) 0.674

3 43.9(1.5) [2,1] (16) 0.711(6.11e-4) 0.711

4 49.8(3.5) [3,1] (14) 0.735(6.47e-4) 0.736

5 50.4(3.7) [3,2] (13) 0.758(1.06e-3) 0.759

6 64.0(6.3) [4,2] (12) 0.776(1.39e-3) 0.778

7 59.1(4.3) [5,2] (14) 0.792(1.04e-3) 0.792

8 63.9(4.8) [5,3] (10) 0.805(1.20e-3) 0.806

9 60.6(3.5) [6,3] (10) 0.817(6.53e-4) 0.818

10 63.7(5.7) [7,3] (12) 0.826(9.88e-4) 0.827

Table 5

Performance of SMRAS on the buffer allocation problem case (ii), based on 16 independent

simulation runs. The standard errors are in parentheses.

n Navg(std err) Alloc (NA∗) T̄ (std err) T ∗

1 1.02e+2(7.49) [0,1,0,0] (16) 0.523(6.79e-4) 0.521

2 1.29e+2(14.8) [1,1,0,0] (16) 0.555(3.86e-4) 0.551

3 1.75e+2(15.7) [1,1,1,0] (16) 0.587(4.57e-4) 0.582

4 2.51e+2(25.9) [1,2,1,0] (11) 0.606(1.20e-3) 0.603

5 3.37e+2(42.0) [2,2,1,0] (10) 0.626(6.57e-4) 0.621

6 4.69e+2(55.2) [2,2,1,1] (8) 0.644(1.10e-3) 0.642

7 4.56e+2(58.2) [2,2,2,1] (7) 0.659(1.10e-3) 0.659

8 4.45e+2(54.9) [3,2,2,1] (7) 0.674(1.10e-3) 0.674

9 5.91e+2(56.1) [3,3,2,1] (6) 0.689(1.39e-3) 0.689

10 5.29e+2(54.0) [3,3,3,1] (8) 0.701(1.10e-3) 0.701

terministic optimization, which is motivated by the well-known Cross-Entropy me-

thod. SMRAS is general, requires only a few mild regularity conditions on the un-

derlying problem; and thus can be applied to a wide range of problems with little

modification. More importantly, we believe that the idea behind the method offers a

general framework for stochastic global optimization, based on which one can possibly

design and implement other efficient algorithms.

There are several input parameters in SMRAS. In our preliminary numerical

experiments, the choices of these parameters are based on trial and error. For a given

problem, how to determine a priori the most appropriate values of these parameters

is an open issue. One research topic is to study the effects of these parameters on the
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performance of the method, and possibly design an adaptive scheme to choose these

parameters adaptively during the search process.

Our current numerical study with the algorithm shows that the objective function

need not be evaluated very accurately during the initial search phase. Instead, it is

sufficient to provide the algorithm with a rough idea of where the good solutions are

located. This has motivated our research to use observation allocation rules with

adaptive increasing rates during different search phases. For instance, during the

initial search phase, we could increase Mk at a linear rate or even keep it at a constant

value; and exponential rates will only be used during the later search phase when more

accurate estimates of the objective function values are required.

Some other research topics include analyzing the convergence rate of the method

for a class of optimization problems and incorporating local search techniques in the

method to further enhance its performance.
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