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ON BROCKETT’S NECESSARY CONDITION FOR

STABILIZABILITY AND THE TOPOLOGY OF LIAPUNOV

FUNCTIONS ON R
N ∗

CHRISTOPHER I. BYRNES†

Abstract. In [2], Roger Brockett derived a necessary condition for the existence of a feedback

control law asymptotically stabilizing an equilibrium for a given nonlinear control system. The

intuitive appeal and the ease with which it can be applied have made this criterion one of the

standard tools in the study of the feedback stabilizability of nonlinear control systems. Brockett’s

original proof used an impressive combination of Liapunov theory and algebraic topology, in part to

cope with a lacuna in our understanding of the topology of the sublevel sets of Liapunov functions.

In [33], F. W. Wilson, Jr. extended the converse theorems of Liapunov theory to compact attractors

and proved some fundamental results about the topology of their domain of attraction and the level

sets of their Liapunov functions. In particular, Wilson showed that the level sets Mc = V −1(c) are

diffeomorphic to Sn−1 for n 6= 4, 5 using the proof of the generalized Poincaré Conjecture of Smale.

He observed that the excluded cases would from the validity of the Poincaré Conjecture in dimension

3 and 4 and showed that, for n = 5, the assertion ∂Mc ≃ S4 would imply the Poincaré Conjecture

for 4-manifolds. Of course, the topological Poincaré Conjecture for S4 was subsequently proved by

Freedman in 1980 and with the remarkable recent solution by Perelman of the classical Poincaré

Conjecture, Wilson’s Theorem now holds for all n.

In this paper we describe the sublevel, and therefore as a corollary the level, sets of proper

smooth functions V : R
n → R having a compact set C(V ) of critical points. Among the main results

in this paper is the assertion that an arbitrary sublevel set Mc = V −1[0, c] of such a function is

homeomorphic to D
n, the unit disk. For n = 2, this assertion is a consequence of the Schönflies

Theorem, a classical enhancement of the Jordan Curve Theorem. For arbitrary n it follows from

the generalized Schönflies Theorem of Mazur and Brown, from [33] and from the verification of the

Poincaré Conjecture in all dimensions by Perelman, Freedman and Smale. We also describe the

smooth structure of Mc and its boundary, generalizing the results of [33].

This result has several corollaries. In particular, using the Brouwer Fixed Point Theorem this

gives a straightforward proof of Brockett’s criterion and some of its enhancements to global attractors.

These results in turn imply a new necessary condition for Input-to State Stability with respect to a

compact set and an extension of Brockett’s Theorem to the practical stabilizability of equilibria. Our

main results can be further enhanced using the Poincaré-Hopf Theorem and, in this way, also lead

to a streamlined version of Coron’s proof [7] that Brockett’s Theorem holds for continuous feedback

laws, using a classical topological argument on the unit disc D
n.

1. Introduction. Consider a control system

(1.1) ẋ = f(x, u) x ∈ R
n, u ∈ R

m

∗Dedicated to my friend and teacher, Roger Ware Brockett, on the occasion of his seventieth

birthday. Research supported in part by grants from the AFOSR.
†Department of Electrical and Systems Engineering, Washington University. E-

mail:chrisbyrnes@wustl.edu

333



334 CHRISTOPHER I. BYRNES

where the vector field f : R
n → R

n is C1. Given a point x0 ∈ R
n, a problem of great

theoretical and practical interest is to find a C1 feedback control law

(1.2) u = u(x)

rendering x0 ∈ R
n a locally asymptotically stable equilibrium for the closed-loop

system

(1.3) ẋ = Fu(x) := f(x, u(x))

Without loss of generality, we assume x0 = 0. In [2], Roger Brockett proved a funda-

mental result concerning feedback stabilization.

Theorem 1.1. (Brockett) A necessary condition for the existence of a C1 feed-

back law (1.2) rendering x0 ∈ R
n locally asymptotically stability for the closed-loop

system(1.3) is that

(1.4) f(x, u) = y, for all ‖y‖ sufficiently small

be solvable for all ‖y‖ sufficiently small.

Brockett’s proof uses a combination of Liapunov theory and fixed point theory,

an approach which has quite a few other corollaries as well. The basic idea is to prove

that solvability of

(1.5) F (x) = y, for all ‖y‖ sufficiently small.

is a necessary condition for a C1 vector field

(1.6) ẋ = F (x), F (0) = 0,

on R
n to have 0 as a locally asymptotically stable equilibrium. Indeed, if 0 as a locally

asymptotically stable equilibrium for (1.6) then the domain of attraction, D ⊂ R
n, of

0, is an open connected set on which F generates a semiflow

(1.7) Φ : R
+ ∪ {0} × D → D, Φt(x) := Φ(t, x).

Moreover, the classical converse [17, 18, 33] to Liapunov’s Theorem is the assertion

that there exists a C∞ Liapunov function

V : D → R

for (1.6) that is proper, i.e., V −1[a, b] is compact for every closed interval [a, b] ⊂ R.

In this case, the level sets

(1.8) Mc = V −1(c), for c > 0,

of V are C∞ compact manifolds. Similarly, the sublevel sets

(1.9) Mc = V −1(−∞, c], for c > 0
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are C∞ compact manifolds with boundary, which are positively invariant under F and

therefore under Φt, for all t ≥ 0.

Remark 1.1. We can rescale the vector field (1.6) by an integrating factor so

that the rescaled trajectories are those of a flow Φ : R
+ ∪ {0} × D → D of a vector

field F on D. Since F is a complete vector field on the n-manifold D with a globally

asymptotically stable equilibrium, D is diffeomorphic to R
n by a theorem of Milnor

[20]. In particular, there is no difference between the topology of Liapunov functions

for a locally versus a globally asymptotically stable equilibrium.

Remark 1.2. ([5]) Denote the interior of Mc by Mc

◦

. Since Φ : R ×Mc

◦

→ Mc

◦

,

by Milnor’s Theorem we know that Mc

◦

≃ R
n. Moreover, since Mc is a smooth

n-manifold with boundary having a contractible interior, Mc is itself contractible [31,

p. 297].

To say that (1.5) is solvable for a fixed y is to say the vector field F̃ = F − y

has an equilibrium. By continuity, the semiflow Φ̃ of F̃ also leaves Mc positively

invariant for ‖y‖ sufficiently small and, by [35], the existence of an equilibrium for F̃

is equivalent to the existence of a fixed point for

(1.10) Φ̃t : Mc → Mc

for t sufficiently small.

Recall [9, p. 2] that a topological space X is said to be a fixed point space if every

continuous map f : X → X has a fixed point. In this language, Theorem 1.1 will

follow once we show that a sublevel set of a Liapunov function for an asymptotically

stable equilibrium is always a fixed point space. Brockett’s original proof [2] uses

the fact that Mc is contractible. Compact contractible manifolds with boundary are

fixed point spaces by the Lefschetz Fixed Point Theorem,[31, p. 196] - a far-reaching

generalization of Brouwer’s Fixed Point Theorem for closed balls in R
n. In [29],

Sontag gives a nice proof that every such Mc is a retract of a closed ball. As a retract

of fixed point space, Mc is also a fixed point space [9, p. 3].

One of the corollaries of the main result in our paper is that each Mc is, in fact,

homeomorphic to the n-disc, D
n. In the equilibrium case, if a Liapunov function V

had the origin as a nondegenerate minimum, then the Morse Lemma would imply

that, after a smooth local change of coordinates,

V (x1, . . . , xn) = x2
1 + · · · + x2

n .

It follows that for 0 < c ≤ c1 sufficiently small, Mc ≃ D
n. Since ∇V (x) 6= 0 for

x 6= 0, integrating the vector field ∇V provides a diffeomorphism Mc1
≃ Mc2

for

c1 < c2, literally growing R
n along the integral curves of ∇V . Of course, we are

mainly interested in the case of critically stable equilibria and, while classical Morse

Theory does not apply directly, it does suggest that Mc should be an n-cell, for c

sufficiently large. In fact, it is.
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Theorem 1.2. Suppose V : R
n → R is a smooth, proper function and the subset,

C(V ) ⊂ R
n, of critical points of V is compact. For any c > maxx∈C(V )‖x‖, Mc is

homeomorphic to D
n. In particular, Mc is a fixed point space.

Remark 1.3. If F is locally Lipschitz and 0 is locally asymptotically stable,

then Zabczyk [36] has given a proof of Theorem 1.1 using an index formula due to

Krasnosel’skĭi [16]. Starting with Zabczyk’s index criterion and using topological

degree theory, Coron [7] has generalized Brockett’s Theorem to the case of continuous

feedback control laws (see Section 7).

Example 1.1. [5] Choosing principal axes (i.e., diagonalizing the inertia matrix

J), the equations of motion for a rigid spacecraft with m momentum exchange de-

vices can be expressed in local coordinates about a reference frame R = [r1, r2, r3]

using Euler angles φ, θ, ψ representing rotations about the r1, r2, r3 axes, respectively,

with corresponding angular momentum variables ω1, ω2, ω3. This leads to the control

system

(1.11)



ω̇1

ω̇2

ω̇3


 =



a1ω2ω3

a2ω1ω3

a3ω1ω2


 +

m∑

i=1

biui, ai ∈ R and bi ∈ R
3

(1.12)



φ̇

θ̇

ψ̇


 =




cos(θ) 0 sin(θ)

sin(θ) tan(φ) 1 − cos(θ) tan(φ)

− sin(θ) sec(φ) 0 cos(θ) sec(φ)






ω1

ω2

ω3




for which we set B = span
R
{b1, . . . , bm} and m̃ = dimR B. It can be shown explicitly

[12] that when m̃ ≥ 2 the system (1.11) - (1.12) satisfies the accessibility rank condition

for a generic plane B and, in this case, is small-time locally controllable [7]. On the

other hand, a straightforward calculation shows that (1.4) is solvable for all y having

the form

y =




y1

y2

y3

0

0

0




where |yi| sufficiently small

if and only if

(1.13) m̃ = 3.

Therefore, there exists a control law (1.2) locally asymptotically stabilizing the origin

if and only if (1.13) holds, or equivalently [5], if and only if the system (1.11)-(1.12) is
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linearizable by state feedback. In particular, the generic underactuated (m̃ = 2) rigid

body model is locally controllable but never continuously asymptotically stabilizable.

In Section 2, we recall some basic facts about compact attractors on R
n and

present an example illustrating what Theorem 3.1 asserts and does not assert. We use

Theorem 3.1 to prove Brockett’s criterion using Brouwer’s Fixed Point Theorem and

review some examples from the literature. In Section 4, we prove an enhancement of

Theorem 3.1 asserting that Mc is in fact diffeomorphic to D
n, except perhaps when

n = 4. We also present a corollary recording the quantitative implications of the

Lefschetz Fixed Point Formula and the fact Mc ≃ D
n. As is well-known, the Lefschetz

Fixed Point Formula implies the Poincaré - Hopf Index Theorem and in Section 5 we

delineate the implications of index theory for feedback stabilization, giving a new

proof of Krasnosel’skĭi’s index formula (Corollary 4.2), a necessary condition due to

Zabczyk [36] and a review of some related results. We conclude with an extension of

Brockett’s necessary condition to the problem of practical stabilizability (Corollary

6.1).

It is a pleasure to thank Andrew Berman, Roger Brockett and Moe Hirsch for

helpful remarks, and the referee and editors for several constructive suggestions.

2. Compact attractors in R
n. Consider the vector field F defined via (1.6)

generating the semiflow (1.7). Following [10], for a choice of metric d on R
n, we shall

say that a closed subset A ⊂ R
n attracts a closed subset B ⊂ R

n provided the distance

between the sets Φt(B) and A, defined as

(2.1) dist(Φt(B),A) := supy∈Binfx∈Ad(Φt(y), x),

tends to 0 as t→ +∞.

Definition 2.1. [10] A compact invariant subset J is said to

1. be stable provided for every neighborhood V of J , there exists a neighborhood

V ′ of J , satisfying Φt(V
′) ⊂ V , for all t ≥ 0;

2. attract points locally if there exists a neighborhoodW of J such that J attracts

each point in W ;

3. be asymptotically stable if J is stable and attracts points locally;

Remark 2.1. Since J is compact, the notion of attracting a point or attracting

a compact set is independent of the choice of metric, as it should be. Moreover, since

J is compact, condition (3) is equivalent to the existence of a positively invariant

neighborhood J ⊂ K for which J attracts K [10, Lemma 3.3.1].

Definition 2.2. A stable compact invariant set J is globally asymptotically

stable provided it attracts every compact subset of R
n. In this case, we say that J is

a compact attractor for F ∈ Vect(Rn).

For any B ⊂ R
n, the ω-limit set of B, as defined in [10], is

(2.2) ω(B) = {x ∈ B| for xj ∈ B and tj → +∞, with j → +∞, Φ(tn, xn) → x}.
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For B = {x}, this coincides with the omega limit set ω(x) introduced by Birkhoff in

1927. Adapting Theorem 3.4.2 of [10] to our setting yields the following fundamental

result.

Theorem 2.1. [10] Suppose M ⊂ R
n is a compact submanifold with boundary

that is positively invariant for F . Then,

1. ω(M) is the maximal non-empty, compact invariant set for (1.7)

2. ω(M) is connected;

3. ω(M) is stable;

4. ω(M) attracts every compact subset of M .

Since ω(M) is compact and invariant, for each x0 ∈ ω(M), there exists a K(x0) >

0 such that

(2.3) ‖Φ(t, x0)‖ ≤ K(x0), for all −∞ < t <∞

Definition 2.3. A trajectory of (1.6) with initial condition x0 is Lagrange stable

if, and only if, (2.3) is satisfed for some K(x0) > 0.

Corollary 2.1. Suppose M ⊂ R
n is a compact, connected submanifold with

boundary that is positively invariant for F . Then, ω(M) is a compact, connected

Liapunov stable attractor for F on M . Moreover,

(2.4) ω(M) = {Lagrange stable trajectories in M}

Definition 2.4. [[33]] Suppose F leaves a domain D invariant and that J ⊂ D is

compact. A Liapunov function V for F on the pair (D, J) is a C∞ function V : D → R

that satisfies

1. V |J = 0 and V (x) > 0 for x /∈ J,

2. V̇ < 0 on D − J, and

3. V tends to a constant value (possibly ∞) on ∂D.

Theorem 2.2 ([33]–[34]). A necessary and sufficient condition for a compact

subset J ⊂ R
n to be globally asymptotically stable in an open invariant domain D ⊂ R

n

is that there exist a Liapunov function V for f on the pair (D, J).

Example 2.1. Consider the simple planar system

ṙ = r(2 − r)(2.5)

θ̇ = 1(2.6)

which has an unstable equilibrium at the origin and a locally asymptotically stable

limit cycle γ evolving on r = 2. The function

V (r, θ) = (2 − r)2

is a global Liapunov function for γ on M = R
2 −{(0, 0)} and has as a sublevel set an

annulus
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(2.7) A = V −1[0, 1].

Of course, γ is not globally asymptotically on R
2, since the equilibrium at the origin

does not tend to γ as t→ ∞

On the other hand, the compact invariant subset

(2.8) A = {(r, θ) : r ≤ 2}

is a global compact attractor for (2.5) on R
2 and, indeed, consists of all Lagrange

stable orbits. Moreover, suppose

φ : R → R

is any monotone nondecreasing function satisfying φ(x) = 0 for x ≤ 2 and φ(x) = 1

for x ≥ 3. A straightforward calculation shows that the function

W (r, θ) = φ(r)V (r, θ)

is a Liapunov function for the pair (R2,A) and that

W−1[0, c] ≃ D
2

for any c > 0. The sublevel sets of W are 2 discs, in harmony with Theorem 3.1.

Remark 2.2. As in Remark 1.2, the interior of any positively invariant neigh-

borhood of a locally asymptotically stable equilibrium in R
n is diffeomorphic to R

n.

As this simple example shows, this remarkable fact does not hold in general for the

topology of positively invariant neighborhood of a locally asymptotically stable at-

tractor. This is key to understanding Theorem 3.1, which is an assertion about global

attractors (see Remark 1.1).

3. The Topology of Liapunov Functions on R
n. Our main theorem, Theo-

rem 4.1, holds for sublevel sets of proper functions V : R
n → R having a compact set

of critical points and has the following corollary for systems having compact global

attractors. In this statement, the observations about Mc are new but the heart and

soul of the corollary are due to fundamental work of Wilson [33] and to the solution

of the Poincaré Conjecture in all dimensions ([26],[8],[24],[23]).

Theorem 3.1. Suppose that A is a stable compact global attractor for (1.6) and

that V is a Liapunov function for A. For any c > 0, Mc is homeomorphic to D
n and

the smooth hypersurface Mc is diffeomorphic to Sn−1.

Proof. For n = 2, Mc ≃ S1 and Theorem 3.1 follows from the Schönflies Theorem,

which asserts that a smooth closed curve separates R
2 into two connected components,

with the interior being homeomorphic to D
2.
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For n = 3, Mc is a closed, orientable surface and is therefore classified by its Euler

characteristic [11]. In particular, using Krasnosel’skĭi’s calculation [16] of the index

of an asymptotically stable equilibrium and the Poincaré - Hopf Index Theorem, one

sees that

−1 = Ind0(F ) = χ(Mc) − χ(Mc).

Since Mc is contractible, χ(Mc) = 1 so that χ(Mc) = 2 and therefore Mc ≃ S2. In

the non-equilibrium case, we argue as folllows. Since Mc is contractible, its boundary

Mc has the integral homology of S2, by the Lefschetz Duality Theorem. Therefore,

χ(Mc) = 2 and Mc ≃ S2.

Remark 3.1. The Schönflies Theorem implies the Jordan Curve Theorem in R
2,

which has itself been generalized as the Jordan-Brouwer Separation Theorem for R
n.

It is worth noting, however, that there are examples [1] of “wildly embedded” spheres

in R
3 which do separate R

3 into an inside and an outside, but for which the interior

is not homeomorphic to D
3.

However, since Mc is a smooth submanifold, the tubular neighborhood theorem im-

plies that Mc is embedded in a bicollared manner and it follows from the generalized

Schönflies Theorem of B. Mazur [19] and M. Brown [3] that Mc is homeomorphic to

D
3.

In general, the boundary of a compact contractible n-manifold is a homology

(n − 1)-sphere. For n ≥ 6, it is known [25] that the mapping that assigns to any

compact n-manifold M with boundary its boundary ∂M is a bijection from the set

of compact contractible topological n-manifolds to the set of (n − 1)-dimensional

topological homology spheres. Therefore, for n ≥ 6, Theorem 3.1 implies and is

implied by the assertion that Mc is homeomorphic to Sn−1. In fact, this latter result

was proved by F. W. Wilson in [33] using Smale’s proof [26] of the generalized Poincaré

Conjecture via the h-Cobordism Theorem (see also [22]).

The starting point in [33] is the neat observation that if 0 is a globally asymptot-

ically stable equilibrium for a complete vector field (1.6) and V is a proper Liapunov

function, then the flow Φ : R × R
n − {0} → R

n − {0} provides a diffeomorphism

Mc × R ≃ R
n − {0} ≃ Sn−1 × R

+,

so that

πi(Mc) ≃ πi(S
n−1), for all i ≥ 1.

Therefore, Mc is a homotopy sphere.

If (1.6) has a non-equilibrium attractor A, then Wilson reverses time and smooths

the vector field at ∞ to obtain a smooth vector field on Sn − A with a globally

asymptotically stable equilibrium and a Liapunov function with Mc as a level set. By

Milnor’s Theorem, Sn −A ≃ R
n and therefore Mc is a homotopy sphere.
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We record the results we need from [33] as a single theorem.

Theorem 3.2. (Wilson) Suppose that A is a stable compact global attractor for

(1.6) and that V is a Liapunov function for A. For any c > 0, Mc is a homotopy

(n− 1)-sphere. In particular, the compact hypersurface Mc ⊂ R
n is diffeomorphic to

Sn−1, except perhaps when n = 4, 5.

Wilson observed that the excluded cases would from the validity of the Poincaré

Conjecture in dimension 3 and 4 and, in fact, showed that for n = 5 the assertion

∂Mc ≃ S4 would imply the Poincaré Conjecture for 4-manifolds, a result which was

unknown at the time.

The Poincaré Conjecture for S4 was proved by Freedman [8] in 1980 as a corollary

of his classification of simply-connected closed topological 4-manifolds. With the

remarkable recent solution by Perelman [24],[23] of the classical Poincaré Conjecture

in dimension 3, we now know that Mc is diffeomorphic to Sn−1 for all n ≥ 1.

Matters being so, the generalized Schönflies Theorem of B. Mazur [19] and M.

Brown [3] implies that Mc is homeomorphic to D
n, for the remaining cases, n = 4, 5.

In the light of Remark 1.1, Theorem 3.1 has the following corollary.

Corollary 3.1. Suppose that x0 is a locally asymptotically stable equilibrium for

(1.6) and that V is Liapunov function for x0 and (1.6) defined on an open neighborhood

x0 ∈ U . For any c > 0 small enough so that the sublevel set Mc ⊂ U is compact, Mc

is homeomorphic to D
n.

4. The Main Theorem and Some Corollaries. In this section, we shall prove

the following result which, together with Theorem 2.2, implies Theorem 3.1.

Theorem 4.1. Suppose V : R
n → R is a smooth, proper function and the subset,

C(V ) ⊂ R
n, of critical points of V is compact. For any c > maxx∈C(V )‖x‖:

1. The vector field ∇V (x) points in every direction, as x ∈ Mc varies, and

2. Mc is homeomorphic to D
n.

In fact, Mc is diffeomorphic to D
n, except perhaps when n = 4. Moreover, for all

n ≥ 1, Mc is diffeomorphic to Sn−1.

Proof. The dynamical system

(4.1) ẋ = −∇V (x), x ∈ R
n

defines a dissipative system on R
n, in the sense of Hale [10], and has Mc as a compact

positively invariant absorbing set. In particular [10], there exists a compact Liapunov

stable global attractor A ⊂ Mc

◦

for (4.1). We note that R
n −A is an invariant set of

both (4.1) and the dynamical system

(4.2) ẋ = ∇V (x).



342 CHRISTOPHER I. BYRNES

Since R
n ⊂ Sn = R

n ∪̇ {∞}, the integral curves of (4.2) lie in M+ = Sn−A and tend

to ∞ ∈ Sn as t→ ∞. In particular, ∞ is a globally asymptotically stable equilibrium

for a new vector field X+ on M+ obtained by smoothing the vector field ∇V to 0 as

x → ∞, in a small neighborhood of ∞, without changing the trajectories of (4.2) as

oriented 1-manifolds, as in [33, p. 325].

By Remark 1.1, we know that M+ is diffeomorphic to R
n. Matters being so, we

are able to apply some of the fundamental results proved by F. W. Wilson in [33].

Suppose W is a proper Liapunov function for (M+, {∞}) and that Nκ, κ > 0, denotes

a sublevel set of W and Nκ = W−1(κ) = ∂Nκ. By Theorem 3.2, Nκ is a homotopy

sphere.

The function L : M+ → R defined via L(x) = e−V (x) is continuous and is smooth

onM+−{∞}. Since the non-equilibrium trajectories ofX+ are orientation-preserving

reparameterizations of the trajectories of (4.2), L̇ < 0 on M+ − {∞}. In fact, X+ =

∇V on a tubular neighborhood of the compact hypersurface Mc = L−1(e−c). In

particular, each trajectory of X+ intersects Mc exactly once, transversely. Similarly,

each trajectory of X+ intersects Nκ exactly once, transversely. If κ > 0 is chosen

sufficiently small, Mc∩Nκ = ∅ and for each x ∈Mc there exists a smooth, everywhere

positive function τ(x) defined by the condition Φτ(x)(x) ∈ Nκ. Therefore, the map

T : Mc → Nκ defined by T (x) = Φτ(x)(x) is a diffeomorphism. This proves the

following result:

Lemma 4.1. Mc is a homotopy sphere.

Remark 4.1. The proof of Lemma 4.1 is a technical modification of the proof of

Theorem 3.2 in [33] that is needed to accommodate the fact that V is not a Liapunov

function for the attractor A ⊂ Mc for the gradient dynamical system (4.1). Indeed,

elementary examples show that A will in general contain Lagrange stable orbits,

connecting the critical points of V , on which V will not be constant. Indeed, the

starting point in [33] is the existence of a stable compact global attractor A for (1.6)

on R
n to study the topology of a proper Liapunov function V . In contrast, we start

with a proper function V with a compact set of critical points and use [10] to conclude

the existence of a compact, Liapunov attractor, A, for the gradient system (4.1) to

study the topology of V . In fact, Hale [10] shows that A coincides with the set of

Lagrange stable orbits.

We can now apply Wilson’s Theorem 3.2 to conclude:

Lemma 4.2. Suppose V : R
n → R is a smooth, proper function and the subset,

C(V ) ⊂ R
n, of critical points of V is compact. For any c > maxx∈C(V )‖x‖, Mc, the

level set Mc ⊂ R
n is a smoothly embedded Sn−1.

We now turn to the topology of Mc.

Proposition 4.1. Suppose V : R
n → R is a smooth, proper function and the

subset, C(V ) ⊂ R
n, of critical points of V is compact. For any c > maxx∈C(V )‖x‖,

the sublevel set Mc ⊂ R
n is a smoothly embedded D

n, except perhaps when n = 4.
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Proof. For n ≤ 3, two n-manifolds are diffeomorphic if, and only if, they are

homeomorphic. Therefore, Proposition 4.1 follows from Theorem 3.1 for n ≤ 3. For

n ≥ 5, since Mc ⊂ R
n is a smoothly embedded Sn−1, Proposition 4.1 follows from

the Differentiable Schönflies Theorem [22, Theorem D, p. 112].

Remark 4.2. The Differentiable Schönflies Theorem was proven by Smale [27,

Corollary 1.3] for the cases n 6= 4, 7. Suppose n = 7. By Remark 1.2, Mc

◦

is homeo-

morphic to R
7 and Mc is contractible. Since ∂MC = Mc ≃ S6 is simply connected,

the restriction n = 7 can be removed by applying the subsequent results of Smale [28,

Theorem 5.1], see also Milnor [22, p.108].

Proposition 4.2. If n = 4, Mc is homeomorphic to D4.

Proof. Mc is a smoothly embedded S3, separating R
4 into an inside, Mc

◦

, and an

outside. By the tubular neighborhood theorem, there exists a neighborhood U of Mc

and a diffeomorphism Ψ : U → S3×[−1, 1], with Ψ(Mc) = S3×{0}. In particular, Mc

is a “bicollared” embedded S3 and therefore, by the generalized Schönflies Theorem

of B. Mazur [19] and M. Brown [3], the closure of the interior of Mc, i.e. Mc, is

homeomorphic to D
4.

Finally, choose any vector v ∈ R
n and consider the vector field Fǫ(x) = −∇V (x)+

ǫv. As before, for ǫ > 0 and sufficiently small, Fǫ points inward on Mc and therefore

has an equilibrium xǫ ∈ Mc ≃ D
n. Therefore, ∇V (xǫ) points in the direction of v.

Remark 4.3. The validity of the 4-Disk Conjecture [22, p. 113] would imply

that Mc is actually diffeomorphic to D4. However [22, p. 113], the 4-Disk Conjecture

is itself equivalent [22, p. 113] to the nonexistence of exotic smooth structures on S4.

This question is currently terra incognita.

For the sake of completeness, we note that Theorem 4.1 implies Theorem 1.2

and, together with Theorem 2.2, Theorem 3.1. Our next corollary extends Brockett’s

necessary condition, Theorem 1.1, to the case of a compact, global attractor in R
n.

Corollary 4.1. Suppose that A ⊂ R
n is compact and that (1.2) is a smooth

feedback law rendering A a global Liapunov stable attractor for the closed-loop system

(1.3). Then, (1.4) is solvable for all ‖y‖ sufficiently small.

Example 4.1. [2] The classic example of a controllable system which is not

asymptotically stabilizable by smooth (or continuous, Remark 1.3) feedback is Brock-

ett’s nonholonomic integrator

(4.3) ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2.

We note that the feedback law

(4.4) u1(x) = x2 − x1x3, u2(x) = −x1 − x2x3

renders the origin Liapunov stable. However, as noted in [2], for the nonholonomic



344 CHRISTOPHER I. BYRNES

integrator the equation (1.4) can never be solved when

y =




0

0

ǫ


 , for ǫ 6= 0.

Therefore, the origin can be made globally Liapunov stable for the non-holonomic in-

tegrator by polynomial feedback, but (4.3) cannot be asymptotically stabilized about

any compact attractor using a continuous feedback law.

Remark 4.4. Similarly, the rigid body model of a satellite with two controls,

described in Example 1.1, cannot be globally stabilized about a compact attractor

A on R
n. However, in [5] these satellite equations are stabilized about a revolute

motion about an axis. In this case, there is a global attractor A ≃ S1, consisting

of a submanifold of equilibria, on an ambient state-space manifold M which can be

shown to be diffeomorphic to R
5 ×S1. The proof uses the s-Cobordism Theorem [15]

of Barden, Mazur and Stallings and is similar to the proof in [4] of the corresponding

result for asymptotically periodic orbits.

One consequence of Corollary 4.1 is that the compact attractor A must contain

an equilibrium for the closed-loop system (1.3). If an equilibrium x of the closed-loop

vector field Fu is isolated, then the index, Indx(−Fu), of Fu at x is defined [21] as the

degree of the map

(4.5)
−Fu

‖Fu‖
: ∂B(x, ǫ) → Sn−1

of the boundary of an ǫ-ball B(x, ǫ) about x to the unit sphere, for ǫ sufficiently small.

If each equilibrium of (1.3) is isolated, then the Poincaré-Hopf Theorem [21], together

with our main result, implies

(4.6) Ind(−Fu) =
∑

Fu(x)=0

Indx(−Fu) = χ(Mc) = χ(Dn) = 1.

This quantitative index formula significantly extends the existence result guaranteed

by Brouwer’s Fixed Point Theorem and has some interesting consequences. For ex-

ample, in the equilbrium case (4.6) yields a new proof of a classical index theorem

from nonlinear analysis [16].

Corollary 4.2. (Krasnosel’skĭi) If G is a smooth vector field on R
n with G(0) =

0 a locally asymptotically stable equilibrium, then

(4.7) Ind0(−G) = 1.

Proof. Choose a Liapunov function V for G and 0. Since 0 is the only equilibrium

of G in Mc for c > 0 sufficiently small, there is only one summand in (4.6).

Definition 4.1. We shall say that an equilibrium for −Fu is completely unstable

if it is asymptotically stable for −Fu.
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Remark 4.5. In particular, (4.7) provides the computation of the contributions

to the index formula arising from the summands corresponding to an asymptotically

stable equilibrium xs, viz. Indxs
(−Fu) = 1, and to a completely unstable equilibrium

xc, viz. Indxc
(−Fu) = (−1)n.

In our next result, we will assume that any Liapunov function V for a system

(1.3) having a compact global attractor has been normalized by an additive constant

to satisfy

(4.8) V |A = 0 and V (x) > 0 for x /∈ A,

as in Definition 2.4.

Corollary 4.3. Suppose that A ⊂ R
n is compact and that (1.2) is a smooth

feedback law rendering A a global Liapunov stable attractor for the closed-loop system

(1.3). Then, A contains at least one equilibrium of (1.3). If the equilibria of (1.3)

are isolated, then on Mc, for any c > 0, we have

(4.9) Ind(−Fu) =
∑

Fu(x)=0

Indx(−Fu) = 1.

In particular:

1. If each equilibrium is locally asymptotically stable, then there exists a unique

equilibrium for (1.3);

2. If each equilibrium is completely unstable, then there exists a unique equilib-

rium for (1.3), n is even, and there exists a nontrivial Lagrange stable orbit

in A;

3. If each equilibrium is hyperbolic, then there are an odd number of equilibria.

Proof. Assertion (1) follows from Remark 4.5, as do the first two claims in As-

sertion (2). As for the final claim, denote the unique equilibrium of (1.3) by xc.

Since xc is completely unstable and since A is asymptotically stable, we must have

A−{xc} 6= ∅. For any x0 ∈ A−{xc}, the closed-loop trajectory Φ(t, x0) is Lagrange

stable, by Corollary 2.1.

For a hyperbolic equilibrium xh, we have

(4.10) Indxh
(Fu) = sign det(DFu(xh)) = ±1

In particular, if each equilibrium is hyperbolic there must be an odd number of sum-

mands.

Remark 4.6. Conclusions (1) and (3) are illustrated in one dimension by the

phase portrait of the pitch-fork bifurcation ẋ = µx−x3, for µ < 0, µ = 0 and µ > 0.

Conclusions (2) and (3) are illustrated in the plane by Example 2.1.

5. A Necessary Condition for Input-to-State Stability. We first recall

some standard concepts concerning the comparison functions from Liapunov stability

theory.
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Definition 5.1.

1. A continuous function α : [0, s) → [0,∞) is said to belong to class K, i.e.

α ∈ K, if α is strictly increasing and α(0) = 0.

2. α is said to be of class K∞ if s = ∞ and limt→∞α(t) = ∞.

3. A continuous function β : [0, s) × [r,∞) → [0,∞) is said to belong to

class KL if β(·, ρ) is class K and β(σ, ·) is monotone decreasing in σ with

limσ→∞β(σ, ·) = 0.

Suppose A ⊂ R
n is a compact set that is invariant for (1.1) when the control u = 0.

For x ∈ R
n, denote dist(x,A) by ‖x‖A. In the theory of ISS systems it is customary

to restrict attention to controls u ∈ L∞([0,∞),Rm) and to denote the norm of u in

this space by ‖u‖.

Definition 5.2. (Sontag) The system (1.1) is said to be input-to-state stable

(ISS) with respect to A, provided there exists a function β ∈ KL and a function

γ ∈ K such that

(5.1) ‖x(t, x0, u)‖A ≤ β(‖x0‖A, t) + γ(‖u‖).

If (1.1) is ISS with respect to a compact set A, then by [30] there exists an ISS-

Liapunov function V for (1.1) and A; i.e., a smooth, proper function V : R
n → R

satisfying (4.8) and

(5.2) V̇ = 〈∇V, f(x, u)〉 ≤ −α(‖x‖A) + σ(‖u‖)

for α ∈ K∞ and σ ∈ K.

While the existence of an ISS-Liapunov function certainly implies that (1.1) is

ISS with respect to A, the existence of an ISS function is a substantial generalization

of the converse theorems of Liapunov theory for attractors for autonomous systems,

as described in Section 2. Indeed, taking u = 0 in (5.2) shows that V is a Liapunov

function for (1.1) and A, when u = 0. In particular, any of our necessary condi-

tions for asymptotic stability of attractors applies to such systems, but because the

ISS hypotheses are more stringent, though very effective, one should expect a more

sharpened version of Theorem 4.1 to hold.

Theorem 5.1. Suppose (1.1) is ISS with respect to the compact subset A ⊂ R
n.

Then, for each constant vector d ∈ R
m, the equation

(5.3) f(x, d) = y

is solvable for ‖y‖ sufficiently small.

Example 5.1. In [13] it is shown that the system

(5.4) ẋ = −x+ xu
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is not ISS-stable with respect to A = {0}, despite the fact that {0} is a globally

asymptotic equilibrium of (5.4) with u = 0. Indeed, when d = 1, (5.3) is solvable only

for y = 0.

Example 5.2. In [29] it is shown that the system

(5.5) ẋ = −x+ (x2 + 1)u

is not ISS-stable with respect to A = {0}, despite the fact that {0} is a globally

asymptotic equilibrium of (5.4) with u = 0. In fact, when |d| > 1/4, (5.3) has no

solutions.

Proof. Choose an ISS-Liapunov function V for (1.1). By Theorem 4.1, Mc is

homeomorphic to Dn for any c > 0. Now fix u = d. Standard ISS estimates imply

the existence of χ ∈ K such that

(5.6) ‖x‖ ≥ χ(‖d‖) =⇒ 〈∇V, f(x, d)〉 ≤ −α(‖x‖A)

Consequently, there exists c > 0 sufficiently large so that Mc is positively invariant

under the flow of the autonomous system

(5.7) ẋ = f(x, d).

Moreover, for ‖y‖ sufficiently small, Mc is also positively invariant under the flow of

the autonomous system

(5.8) ẋ = f(x, d) − y.

Therefore, by Theorem 4.1 and the Brouwer Fixed Point Theorem, (5.3) is solvable,

for ‖y‖ sufficiently small.

Remark 5.1. It follows from Theorem 5.1 that there always exists an equilibrium

xd for (1.1) forced by a constant control u = d, as was noted in [29] for the case

A = {0}. The necessary condition given by (5.3) is, however, much stronger, as

shown by Example 5.1. We also note that Corollary 4.3 applies to the compact,

Liapunov stable global attractor Ad that exists for the closed-loop system (5.7). In

general, it is Ad, rather than the union of the equilibria xd, that should be regarded

as the steady-state response of (1.1) to constant forcing u = d, see [14].

6. A Necessary Condition for Practical Stabilization.

Definition 6.1. [13] The system (1.1) is said to be practically stabilizable about

the point x∗ provided that for every bounded neighborhood x∗ ∈ N ⊂ R
n and every

ǫ > 0 there exists a feedback control law u = uǫ,N(x) such that for every x0 ∈ N there

exists a T > 0 for which the trajectory Φ(·, x0) of (1.3) satisfying Φ(t, x0) ∈ Bǫ(x
∗)

for t > T.
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Corollary 6.1. A necessary condition for the practical stabilizability of (1.1)

about x∗ is that (1.4) be solvable for all ‖y‖ sufficiently small.

Proof. Fix a bounded open subset

(6.1) x∗ ∈ N ⊂ R
n

and choose ǫ > 0 sufficiently small such that

(6.2) Bǫ(x
∗) ⊂ N.

By assumption there exists a feedback law uǫ,N(x) such that, for the closed-loop

system (1.3), Bǫ(x∗) attracts N. Set F = Fuǫ,N
in (1.3). By [10],

(6.3) J = ω(N) ⊂ Bǫ(x
∗)

is a compact Liapunov stable attractor for F and the domain of attraction D of J is

an open subset of R
n containing N (cf. [14, Lemma 4]).

On D we can rescale the vector field F by an integrating factor so that the

reparameterized trajectories of (1.3) are those of the flow Φ̄ : R×D → D determined

by a complete vector field F̄ . In particular, for any compact set K ⊂ D there exists

a T > 0 such that K ⊂ Φ(−T,Bǫ(x
∗)). As in [20] and [33], by the Brown-Stallings

Theorem it follows that D is diffeomorphic to R
n.

Since J ⊂ Bǫ(x
∗) ⊂ D is a compact set that is globally asymptotically stabilizable

on D ≃ R
n, Corollary 4.1 implies that (1.4) is solvable for all y with ‖y‖ sufficiently

small.

Remark 6.1. In particular, while the feedback law (4.4) renders the origin

globally Liapunov stable for the non-holonomic integrator, (4.3) is not practically

stabilizable.

7. Necessary Conditions for Continuous Asymptotically Stabiliz-

ing Feedback Laws. Zabczyk [36] applied (4.7) to (1.3) to obtain

(7.1) Ind0(Fu) = (−1)n

whenever u is a Lipschitz continuous feedback law that asymptotically stabilizes the

equilibrium x0 = 0. From this, he deduced Theorem 1.1 for Lipschitz continuous

feedback laws by a degree theoretic result that asserts that a mapping with non-zero

index (4.5) must map the interior of the ball B(x, ǫ) onto itself.

Alternatively, one can appeal to a classical result in dynamical systems, viz. the

persistence of equilibria under a perturbation of an asymptotically stable equilibrium,

which is also a consequence of (4.7). More precisely, for µ ∈ W , a topological space,

consider the differential equation

(7.2) ẋ = Fµ(x) x ∈ R
n,
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where the vector field Fµ is a jointly continuous family on W × R
n of Lipschitz

continuous vector fields on R
n. If Fµ0

has an asymptotically stable equilibrium x0,

then for all µ sufficiently close to µ0,

(7.3) Ind(−Fµ) = Ind(−Fµ0
) = Indx0

(−Fµ0
) = 1

on a sublevel set Mc of a Liapunov function V for Fµ0
. Therefore Fµ has an equi-

librium xµ ∈ Mc, by degree theory [21]. In fact, Fµ has an asymptotically stable

compact attractor Aµ ⊂ Mc which contains an equilibrium xµ.

Remark 7.1. For Fµ = Fu−µ with µ = y, (7.3) implies Theorem 1.1. Moreover,

as a necessary condition for asymptotic stabilization, persistence of equilibrium can

be shown [32] by example to be stronger than Theorem 1.1.

Remark 7.2. If (1.3) is C1 and has a compact attractor, then the persistence of

attractors for Fu − y, for ‖y‖ sufficiently small, will similarly imply Corollary 4.1.

In the equilibrium case, Coron ([7] and the references therein) has generalized

Brockett’s Theorem to the case of continuous feedback control laws by a refinement

of Zabczyk’s index theoretic argument [36] using topological degree theory. As it

should be, in the light of Theorem 3.1 we can streamline his proof. Briefly, suppose

u is continuous at 0 and C1 on R
n − {0} and that 0 is locally asymptotically stable

for (1.3). Coron begins by noting that. according to Kurzweil [17], there exists C∞

Liapunov function V for (1.3). We can apply (4.6) to the dynamical system (4.1) to

obtain

(7.4) Ind0(−∇V ) = (−1)n

on the smooth manifold with boundary Mc, for c > 0 sufficiently small.

It is a fundamental observation of Gauss, invoked by Coron [7], that any two

inward (or two outward) pointing vector fields X1, X2 have the same index. Indeed,

in modern terms, the convex combination λX1 + (1 − λ)X2 is a homotopy through

inward (or outward) pointing vector fields on Mc. Since both Fu and −∇V point

inward on Mc, (7.1) holds for Fu. From (7.3) it then follows [7] that

(7.5) Ind(−Fµ) = 1

for Fµ(x) = Fu(x) − y and ‖y‖ sufficiently small. In the light of our main results, we

can also take c, ‖y‖ sufficiently small so that we have a continuous map

(7.6) Fµ : Mc → Mc

and a homeomorphism

(7.7) T : Mc ≃ D
n, T |Mc

: Mc ≃ Sn−1 with T (0) = 0.
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Implementing T and setting F̃µ = Fµ ◦ T−1, we have the continuous map

(7.8) F̃µ : D
n → D

n

which satisfies

(7.9) Ind(−F̃µ) = Ind0(−F̃µ) = 1.

Matters being so, (1.4) will be satisfied provided the map (7.8) takes on the value 0.

If this were not true, then the map

(7.10)
−F̃µ

‖F̃µ‖
: Sn−1 → Sn−1

would extend to the map

(7.11)
−F̃µ

‖F̃µ‖
: D

n → Sn−1.

Since Sn−1 ⊂ D
n is contractible in D

n to a point, the degree of the composition of

(7.11) with the inclusion ι : Sn−1 → D
n is 0 and therefore the degree of (7.10) is 0,

contrary to (7.9) and the definition (4.5) of the index. Therefore, (1.4) has a solution.

Remark 7.3. It is well-known that (1.4) is also a necessary condition for asymp-

totic stabilization by dynamic feedback compensation. Beginning with (7.1), Coron

[6] has generalized Theorem 1.1 to give a new necessary condition for asymptotic sta-

bilization by continuous dynamic feedback compensation in terms of a criterion using

stable homotopy groups. This necessary condition can be shown [6] by example to be

stronger than (1.4).
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