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A GEOMETRIC FRAMEWORK FOR STABILIZATION BY ENERGY

SHAPING: SUFFICIENT CONDITIONS FOR EXISTENCE OF

SOLUTIONS∗

BAHMAN GHARESIFARD† , ANDREW D. LEWIS‡ , AND ABDOL-REZA MANSOURI§

Abstract. We present a geometric formulation for the energy shaping problem. The central

objective is the initiation of a more systematic exploration of energy shaping with the aim of de-

termining whether a given system can be stabilized using energy shaping feedback. We investigate

the partial differential equations for the kinetic energy shaping problem using the formal theory of

partial differential equations. The main contribution is sufficient conditions for integrability of these

partial differential equations. We couple these results with the integrability results for potential

energy shaping [25]. This gives some new avenues for answering key questions in energy shaping that

have not been addressed to this point.

1. Introduction. In Brockett’s 1977 paper [9] it was observed that there were

structural aspects of mechanical systems that made them attractive as a class of

control problems. In this paper he mentioned differential geometry as the common

mathematical structure between control theory and analytical mechanics. He inves-

tigated the Lagrangian and Hamiltonian formulations for mechanical systems and

considered the interplay of the mechanical and control theoretic structures.

One interesting control problem is the following: given a mechanical system with

an unstable equilibrium at a point q0, stabilize the system using feedback. One of the

recent developments in the stabilization of equilibria is the energy shaping method.

The key idea concerns the construction of a feedback for which the closed-loop system

possesses the structure of a mechanical system. A feedback so obtained is called an

energy shaping feedback and the procedure by which it is obtained is called energy

shaping. In the classical notion of energy shaping, the assumed method consists

of two stages: shaping the kinetic energy of the system—so-called kinetic energy

shaping—and changing the potential energy of the system—so-called potential energy

shaping. If such an energy shaping feedback exists, then for stability one has to ensure

that the Hessian of the closed-loop potential energy is positive definite.

The cart-pendulum, as a mechanical system with one degree of underactuation,

is one of the systems that has been stabilized using the energy shaping method [14,

26]. The system has the upright equilibria as saddle points and potential energy
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shaping alone is not enough to stabilize the system; therefore kinetic energy shaping

is necessary. More complicated mechanical systems with more degrees of freedom like

the spherical pendulum have been stabilized using the energy shaping method [8]. It

is worth mentioning that the spherical pendulum has been mentioned as an example

of a mechanical control system in Brockett’s 1977 paper [9].

To the authors’ knowledge there has been no linearly controllable example (note

that linear controllability is a necessary condition for stabilization by energy shaping)

in the literature that could be proved to be not stabilizable by the energy shaping

method. For linear systems, linear controllability is also a sufficient condition for ex-

istence of a stabilizing feedback [40, 29]. Such sharp conditions for nonlinear systems

do not exist in the literature. Thus the question of which mechanical systems are

stabilizable using energy shaping is still unresolved. Moreover, almost all the exist-

ing results on energy shaping are based on a specific parametrization of the assumed

solutions to the energy shaping problem. While the parameterizations used are suffi-

cient for the particular problems, it is not clear whether (1) a better controller would

result if a richer class of feedbacks were available or (2) there are systems that are

not presently amenable to stabilization by energy shaping using existing parameteri-

zations, but which could be stabilized using energy shaping were the complete set of

energy shaping feedbacks known.

In this paper we give a geometric framework for kinetic energy shaping that should

help to answer some of the key questions about stabilization of mechanical systems us-

ing energy shaping. Recently there have been notable attempts to investigate various

features of the energy shaping problem. The first classical appearance of the notion

of potential energy shaping problem is in [35]. Van der Schaft had a significant geo-

metric contribution to the problem from the Hamiltonian point of view [37]. It turns

out that this method has an extension in the Lagrangian setting called the method

of controlled Lagrangians; this has been investigated by Bloch, Leonard, Marsden,

Chang, [8, 7]. In recent work, Chang, Woolsey and others have realized that the

space of possible kinetic energy feedbacks can be enlarged by considering the addition

of appropriate gyroscopic forcing [13, 39]. In the Hamiltonian framework, the idea

of kinetic energy shaping has been related in [15] to the notion of interconnection

and modified into the of IDA-PBC method [26]. The equivalence of the Controlled

Lagrangian method and the IDA-PBC method has been addressed in [14, 6]. Both

methods result in a set of partial differential equations whose solutions determine the

energy shaping feedbacks. In other recent work, the possibility of finding a coordinate

change for simplifying the kinetic energy shaping partial differential equations in the

IDA-PBC method has been investigated [38]. Lewis in [24] reformulated the kinetic

energy shaping problem as the problem of finding an energy preserving connection

with its associated closed-loop metric.

A differential geometric approach to the kinetic energy shaping problem—the so-
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called λ-method

—has been presented in [5]. In this paper the authors propose a system of linear

partial differential equations for the kinetic energy shaping problem in terms of a new

variable, λ = G
♯
clG

♭
ol, where Gol and Gcl are the open-loop and closed-loop metrics,

respectively. The main idea of the λ-method is that it transforms the set of quasi-

linear equations for kinetic energy shaping into a set of overdetermined linear partial

differential equations [3]. In [4] an equivalent system of linear partial differential equa-

tions is given for the assumed procedure of kinetic energy shaping problem. Moreover,

the authors investigate the compatibility conditions for the set of λ-equation in local

coordinates. However, the analysis of the compatibility conditions is not complete,

and many structural questions remain unanswered, even after one accounts for the

results in [3, 4]. The λ-method has been modified by adding the possibility of using

gyroscopic forces for enlarging the space of solutions [13].

Lewis [24] has introduced an affine differential geometric approach to energy shap-

ing in order to have a better geometric understanding of the problem and to state

some of the questions that had not been addressed before. The main idea of the ap-

proach involves first understanding the existence of such an energy shaping feedback

and then what such a feedback might look like. In recent work, sufficient conditions

for the existence of potential energy shaping are derived assuming that kinetic energy

shaping has taken place [25]. The results are based on the integrability theory for

linear partial differential equations developed by Goldschmidt [18] and Spencer [34].

Although the results offer some insight, they are limited by the fact that kinetic energy

shaping has been assumed to precede potential energy shaping.

In the present work, we use the affine differential geometric approach for modeling

mechanical systems. We consider the class of simple mechanical control systems.

The central objective of this paper is the initiation of a more systematic geometric

exploration of energy shaping with the aim of determining whether a given system

can be stabilized using energy shaping feedback. Most of the previous results have

dealt with a particular solution and neither the role of closed-loop stability nor a

complete exploration of the space of solutions has been discussed with any degree of

generality. We use the geometric theory of partial differential equations originated by

Goldschmidt and Spencer in the late 1960’s using jet bundle structure [31, 18, 34].

We describe the energy shaping partial differential equations as a fibered submanifold

of the k-jet bundle (in our case, k = 1) of a fibered manifold. By revealing the

geometric structure of kinetic energy shaping, we observe similarities of the problem

of kinetic energy shaping with some well-known problems in Riemannian geometry;

in particular, the problem of finding a metric connection, initiated by Eisenhart and

Veblen [16].

We also discuss the integrability of the λ-equation from a geometric point of

view [18, 19], and we address some interesting geometric features of the integrability
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conditions in the λ-method. In particular, we notice that the necessary conditions

for the set of λ-equations restricted to the underactuated distribution are related to

the Ricci identity [12, 23], an identity which also features prominently in the work

of Eisenhart and Veblen [16] on the metric connection problem. The similarities of

the kinetic energy shaping problem and the metric connection problem, we reveal the

geometric structure of the compatibility conditions.

We also couple the set of λ-equations for kinetic energy shaping with the inte-

grability results of potential energy shaping [25]. This allows us to address some key

questions in energy shaping that have not been addressed to this point. For example,

the procedure shows how a poor design of closed-loop metric can make it impossible to

achieve any flexibility in the character of the possible closed-loop potential functions.

Finally, we discuss systems with one degree of underactuation and we show that for

this class of systems there is always a solution to the potential energy shaping problem

for each closed-loop energy shaping metric.

This paper is organized as follows. In Section 2 we review the affine geometric

setup for the energy shaping problem [24], and we state some of the fundamental open

problems in energy shaping. In Section 3 we give a brief review of the mathematical

structures we use in this paper. In particular, Section 3.1 gives an introduction to the

geometric methods for analyzing formal integrability of partial differential equations

[18], [19]. The main character of the theorems in this section is extremely algebraic

and may seem unmotivated to a reader unfamiliar with the formal theory of partial

differential equations. A reader new to these techniques is advised that some effort

will be required to become comfortable with them. In Section 3.2 we motivate the

definition of a connection as a section of a jet bundle [30] in order to give a precise

definition for the space of torsion free connections on a manifold. We give a geomet-

ric formulation for the partial differential equations of the kinetic energy shaping in

Section 4, and we recall the existing results for potential energy shaping [25]. In this

paper we use the geometric formulation of the kinetic energy shaping problem using

the λ-method [5], [13]. We review and reprove the main results of the λ-method in

Section 4.2. Section 5 contains the main contribution of the paper. We prove that the

set of λ-equations has an involutive symbol and is formally integrable under a certain

surjectivity condition. In other words, we give sufficient conditions for the existence

of a formal solution to the λ-equations. Section 7 deals with the potential energy

shaping problem. We analyze the set of conditions in [25] to characterize the set of

acceptable closed-loop metrics. Finally, in Section 8 we give a set of sufficient condi-

tions for total energy shaping and, as an example, we specialize our results to systems

with one degree of underactuation. In particular we show that in this case, for any

closed-loop metric that satisfies the kinetic energy shaping conditions a closed-loop

potential energy shaping is achievable.
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Notation. The basic differential geometric notations that we use in this paper are

those of [1] and [11]. The identity map for a set S is denoted by idS and the image

of a map f : S → W by Im(f). For a vector space V the set of (r, s)-tensors on V

is denoted by Tr
s(V). By SkV and ΛkV we denote, respectively, the set of symmet-

ric and skew-symmetric (0, k)-tensors on V. We shall also require symmetrizing and

skew-symmetrizing maps. Thus, for A ∈ T0
k(V), we define the following projection

maps:

Alt(A)(v1, · · · , vk) =
1

k!

∑

σ∈Sk

(−1)sgn(σ)A(vσ(1), · · · , vσ(k));

Sym(A)(v1, · · · , vk) =
1

k!

∑

σ∈Sk

A(vσ(1), · · · , vσ(k)),

where Sk is the permutation group on k symbols and sgn(σ) is the parity of the

permutation σ. Let A be a (0, 2)-tensor on V. We define the flat map A♭ : V → V∗ by

〈A♭(u); v〉 = A(u, v), u, v ∈ V. The inverse of the flat map is denoted by A♯ : V∗ → V

in case A♭ is invertible. We also define a similar notation for a (0, 3)-tensor A on V by

〈A♭(u), w〉 = A(w, u, u), u, w ∈ V.

For S ⊂ V and W ⊂ V∗ we denote

ann(S) = {α ∈ V∗ | α(v) = 0, ∀v ∈ S},

coann(W ) = {v ∈ V∗ | α(v) = 0, ∀α ∈ W}.

For the purpose of using a version of the Cartan–Kähler theorem, all manifolds

and maps will be assumed to be analytic unless otherwise stated. Many of the theo-

rems and lemmas are still true in the smooth case. Let Q be an analytic manifold, if

π : E → Q is an analytic vector bundle, Γω(E) denotes the set of analytic sections of

E. We denote the tangent bundle of Q by πQ : TQ → Q. The set of analytic functions

on Q is denoted by Cω(Q). The exterior derivative of a k-form α on Q is denoted

by dα. For a (0, k)-tensor field A and a Riemannian metric G on Q, we define the

(1, k − 1)-tensor field G♯A by

(1) G
♯A(α, X1, · · · , Xk−1) = A(G♯(α), X1, · · · , Xk−1),

where α ∈ Γω(T∗Q) , X1, · · · , Xk ∈ Γω(TQ). Finally, we give a decomposition of the

(0, 3)-tensor fields. We call a (0, 3)-tensor field A on Q:

a) gyroscopic if A(X1, X2, X3) = −A(X2, X1, X3), ∀X1, X2, X3 ∈ Γω(TQ);

b) torsional if A(X1, X2, X3) = −A(X1, X3, X2), ∀X1, X2, X3 ∈ Γω(TQ);

c) geodesic if A(X1, X2, X3) = A(X1, X3, X2), ∀X1, X2, X3 ∈ Γω(TQ);
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d) skew if A ∈ Γω(Λ3(TQ)).

We denote the set of gyroscopic and torsional tensor fields on Q, respectively, by

Gyr(TQ) and Tor(TQ). We can record the decomposition of T0
3(TQ) as follows [24],

[17]:

T0
3(TQ) = S3(TQ) ⊕ (Gyr(TQ) ∩ kerAlt) ⊕ (Tor(TQ) ∩ kerAlt) ⊕ Λ3(TQ).

2. Statement of the problem. A forced simple mechanical system is a quadru-

ple Σ = (Q, G, V,Fe) where Q is an n-dimensional manifold called the configuration

manifold, G is a Riemannian metric on Q, V is a function on the configuration man-

ifold called the potential function and Fe : TQ → T∗Q is a bundle map over idQ

called the external force. We denote by ∇G the covariant derivative with respect to

the associated Levi-Civita connection. The governing equations for a forced simple

mechanical system are

∇G

γ′(t)γ
′(t) = −G

♯ ◦ dV (γ(t)) + G
♯Fe(γ

′(t)),

where γ : I → Q is an analytic curve on Q.

Similarly, a simple mechanical control system is a quintuple Σ = (Q, G, V,Fe,W)

where Q is an n-dimensional manifold called the configuration manifold, G is a Rie-

mannian metric on Q, V is a function on the configuration manifold called the potential

function, Fe : TQ → T∗Q is a bundle map over idQ called the external force and W

is a subbundle of T∗Q called the control subbundle [11]. The governing equations for

a simple mechanical control system are

∇G

γ′(t)γ
′(t) = −G

♯ ◦ dV (γ(t)) + G
♯Fe(γ

′(t)) + G
♯u(γ′(t)),

where γ : I → Q is a curve on Q and u : TQ → W is the control force. A class of

external forces in which we are interested is gyroscopic forces.

Definition 2.1. Let Σ = (Q, G, V,Fe) be a forced simple mechanical system. We

call an external force FG : TQ → T∗Q a gyroscopic force if, for all X ∈ Γω(TQ),

〈X,FG(X)〉 = 0.

A linear gyroscopic force is a gyroscopic force with the following form:

FG,1(X) = −B
♭
G,1(X), X ∈ Γω(TqQ),

where BG,1 is a skew-symmetric (0, 2)-tensor. A quadratic gyroscopic force is a gyro-

scopic force FG,2 with the following form:

FG,2(X) = B
♭
G,2(X), X ∈ Γω(TqQ),

where BG,2 is a (0, 3)-tensor which is skew-symmetric in the first two arguments, i.e.,

BG,2(X, Y, Z) = −BG,2(Y, X, Z), X, Y, Z ∈ Γω(TqQ). By definition of the flat map, a
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quadratic gyroscopic force is defined by

〈FG,2(X); Z〉 = BG,2(Z, X, X), X, Z ∈ Γω(TqQ).

Given an open-loop simple mechanical control system Σol = (Q, Gol, Vol,Fol,Wol),

we seek a control force such that the closed-loop system is a forced simple mechanical

system Σcl = (Q, Gcl, Vcl, Fcl), possibly with some external force. The reason for

seeking this as the closed-loop system is that the stability analysis of the equilibria for

mechanical systems is well understood [11, Chapter 6]. The class of gyroscopic forces

does not change the total energy of the closed-loop system, while adding gyroscopic

forces increases the possibility of finding a stable closed-loop system [13]. In this

paper we assume that the open-loop external force Fol is zero. Moreover, it turns out

that only the quadratic gyroscopic forces are useful in extending the space of possible

closed-loop metrics [24]. The objective, therefore, can be phrased with the following

definition.

Definition 2.2. Let Σol = (Q, Gol, Vol,Fol,Wol) be an open-loop simple mechan-

ical control system with Fol = 0. If there exists a bundle map ushp : TQ → Wol (called

control) with ushp = −ukin − upot such that the closed-loop system is a forced simple

mechanical system Σcl = (Q, Gcl, Vcl,Fcl), where Fcl is a quadratic gyroscopic force

with associated (0, 3)-tensor B and

1. G
♯
ol ◦ ukin(γ

′(t)) = ∇Gcl

γ′(t)γ
′(t) −∇Gol

γ′(t)γ
′(t) − G

♯
cl ◦ (B♭(γ′(t))),

2. upot(γ(t)) = G♭
ol ◦ G

♯
cldVcl(γ(t)) − dVol(γ(t)),

then the control ushp is called an energy shaping feedback.

Remark 2.3. Throughout this work, we assume that the equilibrium point q0 ∈ Q

is a regular point for Wol. Moreover, we assume that the control codistribution Wol

is integrable. This assumption is common in the literature and many examples fall

into this case.

The conditions of Definition 2.2 contain as unknowns the closed-loop metric Gcl,

the closed-loop potential energy Vcl and the gyroscopic (0, 3)-tensor field B. One can

observe that these equations involve the first jet of the unknowns. One can construct

concretely a set of first-order partial differential equations as necessary and sufficient

conditions for the existence of an energy shaping feedback. Let W ⊂ T∗Q be a given

subbundle and define the associated Gol-orthogonal projection map P ∈ Γω(T∗Q⊗TQ)

by

Ker(P ) = G
♯
olW

Note that P completely prescribes W . We apply P to the equation from part 1

of Definition 2.2 to arrive at the following equation:

P (∇Gcl

γ′(t)γ
′(t) −∇Gol

γ′(t)γ
′(t) − G

♯
cl ◦ B

♭(γ′(t))) = 0.
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Assume Q is an n-dimensional manifold and W is an integrable codistribution of

dimension n − m. In adapted local coordinates the kinetic energy shaping partial

differential equation is given by

P a
r (Grl

cl(Gcl,lj,k + Gcl,lk,j − Gcl,kj,l)−G
rl
ol(Gol,lj,k + Gol,lk,j −Gol,kj,l)−G

rl
clBlkj) = 0,

where i, j, k, l, r ∈ {1, · · · , n}, a ∈ {1, · · · , m} and we denote the first derivative of

Gcllj with respect to qk by Gcl,lj,k. Similarly, let P̂ : T∗Q → T∗Q/Wol be the canonical

projection on to the quotient vector bundle. We have

P̂ (G♭
ol ◦ G

♯
cldVcl(γ(t)) − dVol(γ(t))) = 0.

In local coordinates we have

P̂ i
a(Gol,ijGcl

jkVcl,k − Vol,k) = 0,

where i, j, k ∈ {1, · · · , n}, a ∈ {1, · · · , m} and we denoted the first derivative of Vcl

with respect to qk by Vcl,k. For more details on the affine differential geometric setup

of energy shaping problem see [24].

Now that the energy shaping partial differential equations have been specified,

we provide a summary of some of the fundamental questions one can now ask.

Some problems in energy shaping

P1. Describe the set of achievable closed-loop metrics. There has not been much

treatment on this problem in the literature apart from giving a geometric

description of the problem [5].

P2. Assume that one has found a closed-loop metric which satisfies the kinetic

energy shaping problem. What are the conditions under which there exists

a closed-loop potential function which satisfies the potential energy shaping

problem?

P3. Describe the set of achievable closed-loop potential functions by allowing the

closed-loop metric to vary over the achievable set.

P4. Give a complete description of the set of stabilizing potential energy shaping

functions. In order to have a stabilizing energy shaping feedback, the Hes-

sian of the closed-loop potential functions should be positive definite. The

type of obstruction this condition puts on the set of achieved energy shaping

feedbacks has not yet been characterized in a geometric fashion.

P5. Describe the effect of including gyroscopic forces in the procedure of energy

shaping. An algebraic presentation of this problem has been given in [24].

Although one can extend our results in the current paper to the case with

gyroscopic forces, many geometric and algebraic constructions need to be

performed to clarify how the results should be interpreted in terms of stabi-

lization.
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P6. Reconstruct some of the existing results using the sufficient conditions pre-

sented in the current paper; namely, answer the following questions using the

results of this paper:

(a) why is it always the case that one can construct an explicit solution to

the set of partial differential equations for systems with one degree of

underactuation?

(b) why is linear controllability a sufficient condition for existence of a sta-

bilizing energy shaping feedback in linear systems?

P7. Find some interesting counterexamples. It would be revealing to have an

example for which there exists no stabilizing energy shaping feedback, even

under the absence of gyroscopic forces. This might help to understand the key

primary question in energy shaping: when is it possible to stabilize a system

by the energy shaping method?

Answers in this paper

A1. In Section 5 we partially answer Problem 1. Assuming that Wol is integrable,

we describe a set of sufficient conditions under which one can construct a for-

mal solution to the set of kinetic energy shaping problem in the analytic case

and in the absence of gyroscopic forces. Moreover, we show that any analytic

solution to the kinetic energy shaping problem satisfies those conditions. (See

Theorems 5.6 and 6.6.)

A2. Lewis [25] presented a set of sufficient condition for Problem 2 using a geo-

metric analysis of the potential energy shaping partial differential equations.

In Section 7 we couple this sufficient condition with the kinetic energy shap-

ing results. In other words, we give conditions on the closed-loop metric

so that there exists a solution to the set of potential energy shaping partial

differential equations. (See Theorem 7.8.)

A3. Problem 3 is wide open and even a clear geometric formulation of this problem

is far from being achieved. In this paper, we start down one possible avenue by

placing the problem in the setting of geometric partial differential equations

[18], [19]. In particular, we give a set of conditions on the set of closed-

loop metrics under which there exists a closed-loop potential function that

satisfies the set of potential energy shaping partial differential equations. (See

Theorem 7.8.)

A6. Problem 6(a) has been discussed in [4] and [2]. But the results do not re-

veal how the geometric obstructions given by the kinetic and potential energy

shaping conditions are satisfied. In Example 7.9 we give a result which essen-

tially solves the problem. The second question has been posed and solved in

[40]. It would be interesting to recover the sufficient conditions solely by look-

ing at the integrability conditions for the energy shaping partial differential

equations.
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3. Preliminaries. We review some basic background for modeling the system

of partial differential equations in the energy shaping problem. This section consists

of three main parts. The first part deals with the geometric modeling of partial

differential equations and the second part gives a useful definition of a connection on

a vector bundle which characterizes the structure of the set of all connections. Finally,

we present the so-called Ricci identity [12] which plays a significant role in answering

some questions about the kinetic energy shaping problem.

3.1. Formal integrability of partial differential equations. In this sec-

tion, we describe the main technique that we use for studying the energy shaping

partial differential equations. The discussion centers around an analogue for the

Cauchy–Kowalevski theorem [10] and formal integrability. We follow the contribu-

tions made by Goldschmidt and Spencer in the late 1960’s [18, 19, 34].

Although understanding the proofs of the main theorems depends on the tech-

niques described in this section, we emphasize that the statement of the main results

of the paper are accessible without understanding formal methods in detail. The main

results in the paper involve applications of the important Theorem 3.20 stated below.

However, the verification of the hypothesis of this theorem typically takes some effort.

In this section we describe the tools used to verify the hypothesis of Theorem 3.20.

3.1.1. Representation of a partial differential equation as a fibered sub-

manifold of a jet bundle. We denote by (E, π, Q) a fibered manifold π : E → Q. The

vertical bundle of a fibered manifold π is the subbundle of Tπ given by Vπ = ker(Tπ).

We denote by Jkπ the bundle of k-jets [31]. If (ξ, U) is an analytic local section of π,

we denote its k-jet by jkξ. We denote an element of Jkπ by jkξ(x). If we represent

the sheaf of germs of sections of π by SQ(π), then jk induces a morphism of sheaves

SQ(π) → SQ(Jkπ). We let πk : Jkπ → Q and πk
l : Jkπ → Jlπ, l ≤ k, be the canoni-

cal projections. One can show that πk and πk
l are surjective submersions; moreover,

πk
l : Jkπ → Jlπ is an epimorphism of fibered manifolds and (Jkπ, πk

l , Jlπ) is a bundle.

The following definition establishes the relationship between jet bundles and systems

of partial differential equations.

Definition 3.1. Let (E, π, Q) be a fibered manifold and let Jkπ be its bundle of

k-jets. A partial differential equation is a fibered submanifold Rk ⊂ Jkπ.

We denote by π̂k the restriction of πk to Rk. As one can see, the “equation”

representation of the partial differential equation is obscure here. The following local

characterization of a partial differential equation as a kernel of a fibered manifold

morphism is helpful in clarifying the equation point of view.

Proposition 3.2. Let (E, π, Q) be a fibered manifold. Given a partial differential

equations Rk ⊂ Jkπ and a point p ∈ Q, there exists neighborhood U of p, a fibered

manifold (E′, π′, U), an analytic section η of π′, and a morphism of fibered manifolds
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Φ : π−1
k (U) → E′ such that

π−1
k (U) ∩ Rk

.
= kerη Φ = {uk ∈ π−1

k (uk) | Φ(uk) = η(πk(uk))}.

Proof. Because Rk is a fibered submanifold, there exists an adapted chart (Uk, φk)

for Jkπ with the induced chart (U, φ) on Q such that

φk(Uk) ⊂ φ(U) × V × W ⊂ R
n × R

m × R
m′

n, m, m′ ∈ Z≥0,

and such that

π−1
k (U) ∩ Rk = {(x, v, 0) | x ∈ φ(U) , v ∈ V }.

Take E′ = U × V and π′(x, v) = x. Taking Φ(u) = (x, v) and η(x) = (x, 0), the result

follows.

A morphism Φ : Jkπ → π′ of fibered manifolds induces a differential operator D

of order k which is a sheaf morphism of the form Φ ◦ jk : SQ(E) → SQ(E′).

3.1.2. Prolongations and symbols.

Prolongation. The process of differentiating a partial differential equation in

order to arrive at a higher order partial differential equation is called prolongation.

One can phrase this statement as the following definition.

Definition 3.3. Let (E, π, Q) be a fibered manifold and let Rk ⊂ Jkπ be a partial

differential equation. The rth-prolongation of Rk is the subset

ρr(Rk) = Jrπ̂k ∩ Jk+rπ.

A partial differential equation Rk is regular if ρr(Rk) is a fibered submanifold of

Jk+rπ for each r ∈ Z≥0. One can represent the rth-prolongation of a partial differential

equations using the associated morphism. The rth-prolongation of Φ is defined to be

the unique morphism of fibered manifolds over Q, ρr(Φ) : Jr+kπ → Jrπ
′, that makes

the following diagram commutes:

SQ(Jk+rπ)
ρr(Φ) // SQ(Jrπ

′)

SQ(E)
D //

jk+r

OO

SQ(E′)

jr

OO

It is fairly clear that that for r, l ∈ Z≥0 and r ≥ l we have πk+r
k+l (ρr(Rk)) ⊂

ρl(Rk). We adopt the notation π̂k+r
k+l : ρr(Rk) → ρl(Rk) and π̂k+r : ρr(Rk) → Q as

the canonical projections. There is no guarantee that the first map is a surjective

submersion; surjectivity of this map leads to the concept of formal integrability which

will be discussed later. The following remark is advantageous for later purposes; for

details of the proof we refer to [20], [19].
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Remark 3.4. Let π be a fibered manifold as before and let Rk ⊂ Jkπ be a partial

differential equation. If ρr(Rk) is a fibered submanifold of Jk+rπ, then ρl(ρr(Rk)) =

ρl+r(Rk). Since one can define ρr(Rk) as the kernel of a morphism of fibered mani-

folds, this follows immediately from studying the following exact commutative diagram:

0

��

0

��
0 // ρr+l(Rk) //

��

Jk+r+lπ
ρl+r(Φ) // Jl+rπ

′

��
0 // ρl(ρr(Rk)) // Jk+r+lπ

ρl(ρr(Φ)) //

��

Jrπ
′

0

Whenever Rk is regular, for sake of convenience, we use Rk+r for the rth-prolongation.

Symbols. The highest order terms in the linearization of a partial differential

equation carry valuable information about formal integrability of the partial differen-

tial equation [18]. Similar to our approach for defining a partial differential equation,

we give two equivalent formal definitions to capture these higher order terms, one as

a vector bundle morphism and one as a family of subspaces.

Given pk−1 ∈ Jk−1π, recall that (πk
k−1)

−1(pk−1) has the structure of an affine

space modeled on SkT∗
πk−1(pk−1)Q⊗Vπk−1

0 (pk−1)
π. For each pk ∈ Jkπ we have Vpk

πk
k−1

≃ SkT∗
πk−1(pk−1)Q⊗Vπk−1

0 (pk−1)π as well as a vector bundle isomorphism π∗
kSkT∗Q⊗

(πk
0 )∗Vπ ∼= Vπk

k−1. The identification of these bundles is made implicitly in most of

the literature [31] and we follow this convention.

Definition 3.5. Let (E, π, Q) be a fibered manifold and let Rk ⊂ Jkπ be a partial

differential equation. The symbol of Rk is the family Gk of vector spaces given by

Gk|pk
= Vpk

π̂k ∩ Vpk
πk

k−1, pk ∈ Jkπ.

Let ξ be a section of E over an open neighborhood U ⊂ Q and let p ∈ U . Let

{f1, · · · , fn} be R-valued functions defined on a neighborhood U of p ∈ Q which

vanish at p. Define ǫk : SkT∗Q ⊗ V π → Vπk by [18]

ǫk : (df1 · · · dfk ⊗ ξ)(p) → jk((Πk
i=1fi).ξ)(p).

ǫk is well-defined since the derivatives of (Πk
i=1fi) vanish up to order k − 1 at p. We

have the following lemma.

Lemma 3.6. Let (E, π, Q) be a fibered manifold. We have the following short

exact sequence of vector bundles over Jkπ:

0 // SkT∗Q ⊗ Vπ
ǫk // Vπk

Vπk
k−1// (πk

k−1)
∗(Vπk−1) // 0 .
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The following definition introduces the symbol map as a morphism of vector bun-

dles. It is crucial to understand the distinction between the definition of the symbol

map as a bundle map and the definition of the symbol map at a point as a map of

vector spaces. This explicit distinction is usually dropped in the literature.

Definition 3.7. Let (E, π, Q) and (E′, π′, Q) be fibered manifolds and let Φ :

Jkπ → E′ be a morphism over idQ. The symbol of Φ is defined to be

σ(Φ) = VΦ ◦ ǫk : π∗
kSkT∗Q ⊗ (πk

0 )∗Vπ → Vπ′.

The following proposition relates the definition of the symbol as family of vector

spaces with that as a map.

Proposition 3.8. Let π be a fibered manifold as above and let pk ∈ Rk ⊂ Jkπ.

Then the following sequences are exact:

1. 0 // Gk|pk
// SkT∗

πk(pk)Q ⊗ Vπk
o (pk)π

σ(Φ)|pk // VΦ(pk)π
′ ;

2. 0 // Gk|pk
// Vpk

π̂k

Vπk
k−1|Vπ̂k// Vπk

k−1(pk)πk−1 .

Proof. The proof of exactness of the first sequence follows from the following

exact commutative diagram:

0

��

0

��
0 // Gk|pk

//

��

SkT∗
πk(pk)Q ⊗ Vπk

0 (pk)(π)

��

σ(Φ) // VΦ(pk)π
′

0 // Vπk
0 (pk)(π̂k) // Vπk

0 (pk)(πk)
V(Φ) // Vπ′

Similarly, for the second sequence, one should consider the following exact commuta-

tive diagram:

0

��

0

��
0 // Gk|pk

//

��

Vpk
π̂k

��

Vπk
k−1|Vπ̂k// Vπk

k−1(pk)πk−1

0 // Vpk
πk

k−1
// Vpk

πk

Vπk
k−1// Vπk

k−1(pk)πk−1 // 0

The second row is exact since Vπk
k−1 is an epimorphism of vector spaces.

Note that Gk is not always a vector bundle over Vπ̂k.

Prolongation of symbols. We establish a process for prolonging the symbol of

a partial differential equation. This process can be obtained in a purely algebraic
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manner [21]. Let (E, π, Q) be a fibered manifold and Rk ⊂ Jkπ a partial differential

equation. We fix a point pk ∈ Rk, we let x = πk(pk) and we let {e1, · · · , en} be a basis

for T∗
xQ. We denote a basis element for SkT∗

xQ by ei1ei2 · · · eik , where i1, · · · , ik ∈

{1, · · · , n} satisfy i1 ≤ i2 ≤ · · · ≤ in. For k, r ∈ Z≥0 we define the natural inclusion

∆k,r : Sk+rT
∗
xQ → SrT

∗
xQ ⊗ SkT∗

xQ by

∆k,r : Ai1···ik+r
ei1ei2 · · · eik+r 7→ Ai1···irir+1···ik+r

ei1ei2 · · · eir ⊗ eir+1 · · · eik+r .

The map ∆k,r can be extended naturally to

∆k,r ⊗ idVπ : Sk+rT
∗
xQ ⊗ Vπk

0 (pk)π → SkT∗
xQ ⊗ SrT

∗
xQ ⊗ Vπk

0 (pk)π.

Let Φ : Jkπ → π′ be the local morphism associated to Rk and let σ(Φ) be the

associated symbol map. With Gk|pk
= kerσ(Φ)|pk

, we establish the rth-prolongation

of the symbol by the following definition.

Definition 3.9. Let Rk ⊂ Jkπ be a partial differential equation. For each pk ∈ Rk

with x = πk(pk), the map

ρr(σ(Φ)|pk
) : Sk+rT

∗
xQ ⊗ Vπk

0 (pk)π → SrT
∗
xQ ⊗ VΦ(pk)π

′

defined by (idSrT∗
xQ⊗σ(Φ)|pk

)◦(∆k,r⊗idVπ) is called the rth-prolongation of σ(Φ)|pk
.

Its kernel is denoted by ρr(Gk|pk
) and is called the rth-prolongation of the symbol.

Remark 3.10. Even if Gk is a vector bundle over Vπ̂k, ρr(Gk) might not be a

vector bundle over Vπ̂k. In case it is, we sometimes use the notation Gk+r instead of

ρr(Gk) .

3.1.3. Formal integrability. Given a partial differential equation, we would

like to study the existence of solutions. Specifically, we would like to construct the

solutions of a given partial differential equation by constructing its Taylor series order

by order. Since the theory we use rests on the Cauchy–Kowalevski theorem we assume

analyticity of all the data. We start by giving a formal definition for solutions.

Definition 3.11. Let (E, π, Q) be a fibered manifold and let Rk ⊂ Jkπ be a

kth-order partial differential equation. A local formal solution of order k is a pair

(ξk, U) where U is an open subset of Q and ξk is a section of Rk over U . If Rk is

regular, one can define a formal solution of order (k + r) as a pair (ξk+r , U), where

ξk+r is a section of Rk+r.

One can come up with different examples which are not “formally integrable” in

the sense that one can not construct a solution as a Taylor series.

Definition 3.12. Let (E, π, Q) be a fibered manifold and let Rk ⊂ Jkπ be a

regular partial differential equation. Then Rk is called formally integrable if the

maps πk+r+1
k+r : ρr+1(Rk) → ρr(Rk) are epimorphisms of fibered manifolds for each

r ∈ Z≥0.
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Proposition 3.13. If Rk is formally integrable then ρr(Gk) is a vector bundle

over Rk for each r ∈ Z≥0.

Proof. As Rk is formally integrable, πk+r+1
k+r is an epimorphism and so locally of

constant rank. Then the following short exact sequence:

0 // Gk+r+1
// V(π̂k+r+1) // V(π̂k+r) // 0

yields that Gk+r is of constant rank.

The δ-sequence. Another purely algebraic construction which is used exten-

sively for the formal theory is the δ-sequence. The δ-sequence has been utilized by

Spencer [33] in the theory of deformation of structures. We describe this construction

in the partial differential equation framework, omitting some details, and we construct

the δ-sequence for T∗Q which provides a characterization of the δ operator with the

fiberwise exterior derivative on the set of differential r-forms on T∗Q. Generally,

there is no necessity for a manifold structure and one can give the construction of the

δ-sequence in a purely algebraic fashion [21].

We start by characterizing ΛrT
∗Q⊗ SkT∗Q as a subset of differential r-forms on

T∗Q. First we give the following lemma whose proof is straightforward.

Lemma 3.14. Let F be a R-vector space and denote by

Pk(F ) = {f : F → R | f(x) = A(x, · · · , x), A ∈ T0
k(F )},

the symmetric homogenous functions of degree k. Then, for f ∈ Pk(F ), there exists

a unique A ∈ Sk(F ) such that A(x, · · · , x) = f(x) for each x ∈ F .

Lemma 3.15. The following map from ΛrT
∗
xQ ⊗ SkT∗

xQ to the set of differential

r-forms on T∗
xQ is a monomorphism of R-vector spaces:

φk,r(α ⊗ A)(x)(v1 , · · · , vr) = A(x, · · · , x)α(v1, · · · , vr), v1, · · · , vr ∈ TpT
∗
xQ ∼= T∗

xQ,

where p ∈ T∗
xQ.

The characterization basically identifies the symmetric tensor part of ΛrT
∗
xQ ⊗

SkT∗
xQ with a homogenous polynomial function of order k. Let dr be the exterior

derivative on T∗
xQ restricted to differential r-forms. One can define a linear map

δr,k : ΛrT
∗
xQ ⊗ SkT∗

xQ → Λr+1T
∗
xQ ⊗ Sk−1T

∗
xQ by asking that the following diagram

be commutative:

ΛrT
∗
xQ ⊗ SkT∗

xQ
δr,k //

φk,r

��

Λr+1T
∗
xQ ⊗ Sk−1T

∗
xQ

φk−1,r+1

��
Γω(ΛrT

∗
xQ)

dr // Γω(Λr+1T
∗
xQ)
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Explicitly, for α ∈ ΛrT
∗
xQ and A ∈ SkT∗

xQ,

δr,k(α ⊗ A)(v1, · · · , vr+1, u1, · · · ,uk−1) =

r+1
∑

j=1

rα(v1, · · · , v̂j , · · · , vr+1)A(vj , u1, · · · , uk−1).

In other words, the δr,k operator imitates the exterior derivative on the space of

differential forms on T∗
xQ when we identify the symmetric homogenous polynomials

of degree k with a symmetric k-tensor.

It turns out that the following sequence, the so-called rthδ-sequence, is exact (here

we simply denote δr,k by δ):

0 // SnT∗
xQ

δ // T∗
xQ ⊗ Sn−1T

∗
xQ

δ // · · ·

· · ·
δ // ΛrT

∗
xQ ⊗ Sn−rT

∗
xQ // 0

Let Rk ⊂ Jkπ be a partial differential equation. Consider the following exact and

commutative diagram:

0 // ΛsT
∗Q ⊗ Gk+r+1

δ

���
�

�

// ΛsT
∗Q ⊗ Sk+r+1T

∗Q ⊗ Vπ
σr+1(Φ)//

δ

��

ΛsT
∗Q ⊗ Sr+1T

∗Q ⊗ Vπ′

δ

��
0 // Λs+1T

∗Q ⊗ Gk+r
// Λs+1T

∗Q ⊗ Sk+rT∗Q ⊗ Vπ
σr(Φ) // Λs+1T

∗Q ⊗ SrT∗Q ⊗ Vπ′

The map δ induces a new δ-sequence for the symbol at each point. Note that se-

quences involving the symbol shall really be specified at each point and for the sake of

simplicity we omit the point. What is more, there is no guarantee that this sequence

is exact in general. Summarizing, we have the following graded differential complex:

0 // Gk+r
δ // T∗Q ⊗ Gk+r−1

δ // · · ·

· · ·
δ // ΛnT∗Q ⊗ Gk+r−n

// 0 .(2)

We denote by Hs
k+r−s(Gk) the cohomology at ΛsT

∗Q ⊗ Gk+r−s of this complex and

we call it the Spencer cohomology group of degree k + r − s.

Hs
k+r−s(Gk) = ker(δs,k+r−s)/Im(δs−1,k+r+1−s).

Gk is said to be m-acyclic if Hs
k+r = 0 for all 0 ≤ s ≤ m and r ≥ 0.

Definition 3.16. Let Q be an n-dimensional manifold and let Rk ⊂ Jkπ be a

partial differential equation as above. If the symbol is n-acyclic it is called involutive.

By definition, a symbol is involutive if and only if its corresponding δ-sequences are

exact. In particular, the symbol of the trivial system of partial differential equations

is involutive.

Remark 3.17. The concept of involutivity is a prominent algebraic concept which

is not easy to grasp at first glance and it is simply not possible to provide a complete
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review of the concept in this document. Guillemin and Sternberg relate the different

interpretations of an involutive symbol and actually propose a practical method for

verifying involutivity [22]. J. P. Serre’s complementary note on the appendix of this

paper completes the picture by relating the sequence given in equation 2 to the Koszul

complex.

We next address the concept of quasi-regular basis and a practical method for

verifying involutivity [32].

Definition 3.18 (Quasi-regular basis). Let (E, π, Q) be a bundle with Q an n-

dimensional manifold and x ∈ Q. Let Rk ⊂ Jkπ be a partial differential equation with

associated symbol Gk and let pk ∈ Rk be such that πk(pk) = x. A basis {α1, · · · , αn}

for T∗
xQ is called quasi-regular if

(3) dim(Gk+1|pk+1
) = dim(Gk|pk

) +

n−1
∑

j=1

dim(Gk,j |(x,pk)),

where

Gk,j |(x,pk) = Gk|pk
∩ SkΣj |x,

and Σj is the subspace of T∗
xQ generated by {αj+1, · · · , αn}.

The following theorem relates the concept of involutivity to the existence of a

quasi-regular basis; the proof of the theorem can be found in [32].

Theorem 3.19 (Criterion of involutivity). Let Rk ∈ Jkπ be a partial differential

equation. If there exists a quasi-regular basis for T∗
πk(pk)Q, the symbol Gk is involutive

at pk ∈ Rk .

We now have the required machinery for the following central theorem for formal

integrability [19].

Theorem 3.20 (Goldschmidt). Let (E, π, Q) be a fibered manifold and Rk ⊂ Jkπ

a partial differential equation. Assume the following hypotheses:

1. ρ1(Rk) is a fibered submanifold of Jk+1π;

2. π̂k+1
k : ρ1(Rk) → Rk is an epimorphism of fibered manifolds;

3. Gk is 2-acyclic.

Then Rk is formally integrable.

Proof. [Sketch of the proof] Let Φ be the local morphism associated to Rk and

recall the affine structure of ρ1(Rk) over Rk. Since ρ1(Rk) is a fibered submanifold of

Jk+1π, we have Gk+1 = ρ1(Gk) as a vector bundle over Rk and so one can define a

vector bundle C = coker(ρ1(σ(Φ))) such that the following sequence is exact:

0 // Gk+1
// Sk+1T

∗Q ⊗ Vπ
ρ1(σ(Φ))// T∗Q ⊗ Vπ′ τ // C // 0

where τ is the canonical projection onto C. The essence of the proof is the construction

of a map κ : Rk → C as follows: Consider the following exact and commutative



370 BAHMAN GHARESIFARD ET. AL

diagram where the upper row is a sequence of vector bundles on which the second

row of affine bundles are modeled:

0 //___ Gk+1
//___

���
�

�

Sk+1T
∗Q ⊗ Vπ

ρ1(σ(Φ))//___

���
�

�

T∗Q ⊗ Vπ′ τ //___

���
�

�

C //___ 0

0 // ρ1(R1) //

��

Jk+1π
ρ1(Φ) //

��

J1π
′

��
0 // Rk

// Jkπ
Φ // π′

Let p ∈ Rk with πk(p) = q ∈ Q and let p′ ∈ Jk+1π projecting to p. By commutativity

of the diagram, ρ1(Φ)(p′) projects to Φ(p). As a result

ρ1(Φ)(p′) − j1Φ(p) ∈ T∗Q ⊗ Vπ′.

Let

(4) κ(p) = τ(ρ1(Φ)(p′) − j1Φ(p)).

One can show that this definition is independent of the choice of p′ [18]. This map

is called the curvature map. A diagram chase shows that the map κ is zero with

respect to the zero section of the vector bundle C if and only if the map πk+1
k is an

epimorphism of affine bundles. Moreover 2-acyclicity implies that π̂k+l
k+r is also an

epimorphism of affine bundles.

If the symbol is involutive, condition 3 is automatically satisfied. We have the

following definition.

Definition 3.21. A partial differential equation Rk is called involutive at a

point p if

1. its associated morphism is of constant rank,

2. there exists a quasi-regular basis at p and

3. the map π̂k+1
k is surjective and is of constant rank in a neighborhood of p.

Example 3.22. Consider the partial differential equation

grad(f) = X,

where f : R
3 → R and X is a vector field on R

3.

One can easily check that the symbol of this partial differential equation is identity

and hence involutive. Since

∂2f

∂xj∂xi
=

∂X i

∂xj
, i, j ∈ {1, 2, 3},

solutions for f exist if

∂Xj

∂xi
=

∂X i

∂xj
, i, j ∈ {1, 2, 3},
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i.e.

curl(X) = 0.

3.2. The space of connections. In this section we fix a fibered manifold

(E, π, Q). As before, we denote by Vπ and Jk(π), the vertical bundle and the bundle

of k-jets of a fibered manifold π respectively [31]. We start by defining what we mean

by a connection. It is not hard to show that this definition is equivalent to the usual

construction of a connection as a splitting of the total space of a bundle on which the

connection is defined [30], [10].

Definition 3.23. A connection on a fibered manifold (E, π, Q) is a section

S : E → J1(π) of the bundle π1
0 : J1(π) → E.

In a natural coordinates (qi, ua, ua
k) for J1(π), a connection has the form (qi, ua) 7→

(qi, ua,Sa
k ) which defines the connection coefficients Sa

k , where a ∈ {1, · · · , m} and

i, k ∈ {1, · · · , n}. One can define the covariant derivative associated to a connection

as follows.

Definition 3.24. Let S : E → J1(π) be a connection on a fibered manifold

(E, π, Q). If ξ is a smooth local section of E, then the S-covariant differential of ξ

is the smooth local section ∇Sξ of T∗Q ⊗ ξ∗V(π) defined by

(5) ∇Sξ(q) = j1ξ(q) − S(ξ(q)).

In natural coordinates we have

∇Sξ =

(

∂ξa

∂qi
− Sa

i

)

dxi ⊗
∂

∂ua
.

If X is a vector field on Q, then the S-covariant derivative of ξ with respect to

X is the section of ξ∗V(π) defined by ∇S
Xξ = ∇Sξ(X). A linear connection on a

vector bundle (E, π, Q) is a connection S : E → J1(π) that is also a vector bundle

morphism over idE. In adapted coordinates (xi, ua) on E and (xi, ua, ua
k) on J1(π), a

linear connection has the form (xi, ua) → (xi, ua,Sa
kbu

b) which defines the connection

coefficients Sa
ib where a, b ∈ {1, · · · , m} and i, k ∈ {1, · · · , n}.

A linear connection S on the vector bundle (TQ, πQ, Q) is sometimes called an

affine connection on Q. We have the following proposition which generalizes to vector

bundles.

Proposition 3.25. The set of affine connections on a manifold Q is the set of

sections of an affine subbundle of the vector bundle T∗Q⊗ J1(πQ) over Q modeled on

the vector bundle T∗Q ⊗ T∗Q ⊗ TQ.

The following proposition clarifies the structure of the space of torsion-free affine

connections.

Proposition 3.26. The set of torsion-free affine connections on a manifold Q is

an affine subbundle of the vector bundle T∗Q ⊗ J1(πQ) over Q modeled on the vector
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bundle S2T
∗Q ⊗ TQ given by

Aff0(Q) =

{Ξ ∈ T∗Q ⊗ J1(πQ) | π1
0 ◦ Ξ = idTQ, (j1Y − Ξ(Y ))(X) − (j1X − Ξ(X))(Y ) = [X, Y ]},

(6)

where X, Y ∈ Γω(TQ) and we thought of Ξ as a section TQ → J1(πQ) for defining

π1
0 ◦ Ξ.

3.3. Ricci identity. Let (E, π, Q) be a vector bundle. There is a bijective corre-

spondence between the set of linear connections S : E → J1π and the type (1, 1)-tensor

fields PH
S on E, where PH

S is a projection operator of constant rank, PH
S (X) = 0 for

every X ∈ Γω(Vπ) and Im(PH
S )⊕Vπ = TE. Such a projection is called the horizontal

projection associated to the connection S [31]. An integral section of a connection S is

an analytic local section ξ of π satisfying j1ξ = S(ξ). There is no guarantee that such

a section exists even locally. The existence of such an integral section is equivalent

to the vanishing of the Nijenhuis tensor of the (1, 1)-tensor field PH
S ( see [31, 23]).

In other words, the Nijenhuis tensor measures the involutivity of the associated hori-

zontal subbundle, and as a result, the Nijenhuis tensor of S is directly related to the

curvature tensor R[S] associated to S. Let (qi, ua) be an adapted local coordinates

on a neighborhood U of E with i ∈ {1, · · · , n} and a ∈ {1, · · · , m}. Also let {ea} be a

basis for the local sections of E. The curvature tensor, R[S] ∈ Γω(E∗ ⊗ E ⊗ Λ2T
∗Q),

can be written as

R[S]aijb =
∂Sa

ib

∂xj
+ Sa

icS
c
jb − (

∂Sa
jb

∂xi
+ Sa

jcS
c
ib),(7)

where i, j ∈ {1, · · · , n} and a, b, c ∈ {1, · · · , m}. One can naturally define an induced

connection on the fibered product as follows. Let (E1, π1, Q) and (E2, π2, Q) be two

vector bundles equipped with two connections S1 and S2, respectively. There is a

unique connection S1 ⊗Q S2 that makes the following diagram commute:

E1 ×Q E2
⊗ //

S1×QS2

��

π1 ⊗Q π2

S1⊗QS2

��
J1π2 ×Q J1π2

// J1(π1 ⊗Q π2)

For more information about the induced connection on a fibered product bundle

see [31]. One can use the same procedure to induce a connection S∗ on the dual

bundle π∗. For our purposes, we consider the tensor bundle (E⊗Q E, π⊗Q π, Q) where

π is a vector bundle. Let (xi) be local coordinates for Q and let (xi, ua) be adapted

coordinates for E, where i ∈ {1, · · · , n} and a ∈ {1, · · · , m}. Denote an analytic

local section of E ⊗ E by ξ = ξabea ⊗ eb where {ea} is a basis for local sections of E
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and a, b ∈ {1, · · · , m}. Then the covariant derivative with respect to S ⊗ S can be

represented by

∇S⊗Sξ = j1ξ − (S ⊗ S)(ξ).

We have the following representation of the covariant derivative with respect to the

induced connection S ⊗ S in local coordinates:

(8) (∇S⊗Sξ)ab
i =

∂ξab

∂xi
− Sa

icξ
cb − Sb

icξ
ac,

where c ∈ {1, · · · , m} and a, b, c ∈ {1, · · · , m}. Using equation (7), one can show that

the associated curvature tensor for S ⊗ S is

(9) R[S ⊗ S]ab
cdijξ

cd = R[S]acijξ
cb + R[S]bcijξ

ac.

The vanishing of the curvature tensor is an obstruction for the involutivity of the

horizontal subspace of T(E ⊗ E) associated with the induced connection S ⊗ S. The

relation between the curvature tensor of a product bundle and the curvature of the

underlying bundles leads to the Ricci identity, [12]. In the literature this identity is

typically introduced through the following lemma:

Lemma 3.27. Let (Q, G) be a Riemannian manifold equipped with a symmetric

affine connection S. Then the following identity holds and is called the Ricci identity:

(10) (∇X∇Y G −∇Y ∇XG −∇[X,Y ]G)(Z, W ) = G(R(X, Y )Z, W ) + G(Z, R(X, Y )W ).

where X, Y, Z, W ∈ Γω(TQ)

Proof. The proof follows from a direct computation using equation (8) to compute

the covariant derivative of G with respect to a vector field.

Remark 3.28. We state the following remarks for future use.

1. Lemma 3.27 can be extended to any (0, 2)-tensor on Q, but for our purposes

we state the lemma for G ∈ S+
2 (T∗Q).

2. The Ricci identity appears when one tries to find a set of necessary conditions

for a metric to be associated to a given symmetric affine connection; see [16],

[36].

4. Geometric formulation of partial differential equations in energy

shaping. We give a formulation of the partial differential equations of the energy

shaping problem using the theory of partial differential equations presented in the

previous section. This formulation is an integral part of our approach since it places

the energy shaping problem separately into the realm of the formal theory of partial

differential equations.

4.1. Kinetic energy shaping. We provide a jet bundle structure associated

to the kinetic energy shaping system of partial differential equations. This system of
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partial differential equations involves the affine subbundle description given for the

set of torsion free connection; see Section 3.2.

Let (S+
2 T∗Q, πG , Q) be the bundle of Riemannian metrics on the configuration

manifold Q. One can generalize the definitions in this section by allowing metrics

with other signatures; see Remark 4.7. Let (B, πB, Q) be the bundle of gyroscopic

tensor fields over Q where B
.
= Gyr(TQ) ∩ ker(Alt). We have the following definition.

Definition 4.1. The kinetic energy shaping bundle is the fibered product

bundle (KS, π
.
= πG ×Q πB, Q), where KS

.
= S+

2 T∗Q×Q B. We denote by π1 and π2 the

projection on the first and second factors.

In local coordinates, a typical fiber over q ∈ Q is a pair (G(q), B(q)) and a typical

point of J1(π) is given by (qi, Gmn, Blpq, Gjk,a, Blpq,b) where we denote the derivatives

of Gjk and Blpq, respectively, by Gjk,a and Blpq,b.

Define the “Levi-Civita” map φLC : J1πG → Aff0(Q) by φLC(j1G) = ∇G. Let

Σol = (Q, Gol, Vol, 0,Wol) be a given open-loop simple mechanical control system and

let (KS, π, Q) be the kinetic energy shaping bundle. The point p0 = (q0, Gol, 0) ∈ KS,

where q0 ∈ Q, represents the open-loop simple mechanical control system Σol. We

define the following projection:

πW : G
♯
ol(T

∗Q ⊗ S+
2 T∗Q) → G

♯
ol(T

∗Q ⊗ S+
2 T∗Q)/G

♯
ol(Wol ⊗ S+

2 T∗Q)
.
= K,

where we used the extended definition of sharp map; see equation (1). We now have

the required tools for defining the kinetic energy shaping partial differential equation

as a submanifold of J1π.

Definition 4.2. Let (KS, π, Q) be the kinetic energy shaping bundle and let p0 =

(q0, Gol, 0) ∈ KS where q0 ∈ Q. If πW and φLC are, respectively, the projection and

the affine connection map defined above, the kinetic energy shaping submanifold

Rkin(p0) ⊂ J1π is defined by

Rkin(p0) = {p ∈ J1π | Φkin(p) = 0},

where Φkin is the kinetic energy shaping map given by

Φkin(p) = πW (φLC(j1π1(p)) − φLC(j1π1(p0))) − πW(π1(p))♯π2(p).

One can represent the governing system of partial differential equations for the

kinetic energy shaping problem by the following exact sequence:

0 // Rkin(p0) // J1π
Φkin // K ,

where Rkin is the kernel of Φkin with respect to the zero section of K.

4.2. The λ-method. In this section, we recall a differential geometric approach

to the kinetic energy shaping problem from [5, 3]. The main idea is to transform the
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set of quasi-linear partial differential equations from the previous section into a set of

linear partial differential equations in terms of a new variable. In the following defini-

tion we introduce a set of partial differential equations which is the main component

of this equivalent system.

The following theorem gives the desired transformation.

Theorem 4.3. Let Σol = (Q, Gol, Vol,Fol,Wol) be an open-loop simple mechanical

control system. Let P ∈ Γω(T∗Q⊗TQ) be the Gol-orthogonal projection as above. Let

Gcl ∈ Γω(S+
2 T∗Q) and let B be a quadratic gyroscopic tensor. If G♭

ol = G♭
cl ◦ λ for

λ ∈ Γω(T∗Q ⊗ TQ), the following two conditions are equivalent:

1. P (∇Gcl

X X −∇Gol

X X − G
♯
cl ◦ B♭(X)) = 0, ∀X ∈ Γω(TQ);

2. (a) ∇Gol

Z (Golλ)(PX, PY ) + 1
2 〈B(λPX, λPY ) + B(λPY, λPX), Z〉 = 0, and

(b) ∇Gol

λPXGcl(Z, Z) + 2Gcl(∇
Gol

Z λPX, Z) = 2Gol(∇
Gol

Z PX, Z)

−2〈λPX, B♭(Z)〉,

where X, Y, Z ∈ Γω(TQ).

In order to prove this theorem we need the following lemma.

Lemma 4.4. Let (Q, G) be a Riemannian manifold and let W be a codistribution

on Q. Let P ∈ Γω(T∗Q⊗TQ) be the G-orthogonal projection introduced above and let

Gcl ∈ Γω(S+
2 T∗Q). If

P (∇Gcl

X X −∇G

XX − G
♯
cl ◦ B

♭(X)) = 0, ∀X ∈ Γω(TQ),

then

1. for X, Y ∈ Γω(TQ) we have

(11) P (∇G

XY −∇Gcl

X Y ) = − 1
2PG

♯
cl ◦ (B♭(X + Y ) − B

♭(X) − B
♭(Y )),

and

2. for G = Gcl ◦ λ for λ ∈ Γω(T∗Q ⊗ TQ) we have

(12) 2G(P (∇G

λPXZ −∇Gcl

λPXZ), X) = ∇G

Z(Gλ)(PX, PX),

where X, Z ∈ Γω(TQ).

Proof. We begin with the first statement. Note that since the connections are

torsion free,

∇G

XY −∇Gcl

X Y = ∇G

Y X −∇Gcl

Y X.

We have

P (∇G

XY −∇Gcl

X Y ) = 1
2P (∇G

XY −∇Gcl

X Y + ∇G

Y X −∇Gcl

Y X)

= 1
2P (∇G

X+Y (X + Y ) −∇Gcl

X+Y (X + Y ))

− 1
2P (∇G

X(X) −∇Gcl

X (X)) − 1
2P (∇G

Y (Y ) −∇Gcl

Y (Y ))

= − 1
2PG

♯
cl ◦ (B♭(X + Y ) − B

♭(X) − B
♭(Y )),
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where X, Y ∈ Γω(TQ).

For the second part, recall that for the Levi-Civita connection ∇G associated to

G one can write

2G(∇G

XY, Z) = LXG(Y, Z) + LY G(Z, X) − LZG(X, Y )

+ G([X, Y ], Z) + G([Z, X ], Y ) − G([Y, Z], X).(13)

Moreover, we have

(14) LX(G(Y, Z)) = G(∇G

XY, Z) + G(Y,∇G

XZ).

Thus

2G(P (∇G

λPXZ −∇Gcl

λPXZ), X) = 2G(∇G

λPXZ, PX) − 2G(∇Gcl

λPXZ, PX)

= 2G(∇G

λPXZ, PX) − 2Gcl(∇
Gcl

λPXZ, λPX).

We use equation (13) to get

2G(P (∇G

λPXZ −∇Gcl

λPXZ), X) = λPXG(Z, PX)− PXG(λPX, Z)

+ G([PX, λPX ], Z)− G([Z, PX ], λPX) + G([Z, λPX ], PX).

Expanding the terms along with equation (14), and after some simplifications, we

have

2G(P (∇G

λPXZ −∇Gcl

λPXZ), X) = G(∇G

Z(λPX), PX) − G(∇G

ZPX, λPX).

Note that

LZ(λ(X)) = ∇G

Z(λ)(X) + λ(∇G

ZX).

As a result,

2G(P (∇G

λPXZ −∇Gcl

λPXZ), X) = G((∇G

Zλ)(PX) + λ(∇G

ZPX), PX)

− G(∇G

ZPX, λPX)

= G((∇G

Zλ)(PX), PX) + G(λ(∇G

ZPX), PX)

− G(∇G

ZPX, λPX)

= G((∇G

Zλ)PX, PX).

Since ∇G
G = 0, one can write

(15) 2G(P (∇G

λPXZ −∇Gcl

λPXZ), X) = ∇G

Z(Gλ)(PX, PX),

which is the desired result.

Proof. [Proof of Theorem 4.3 (1) ⇒ (2) ] We first assume that Gcl and B satisfy

the kinetic energy shaping equation

P (∇Gcl

X X −∇Gol

X X − G
♯
cl ◦ B

♭(X)) = 0, ∀X ∈ Γω(TQ).
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Using the second part of lemma 4.4 we have

(16) 2Gol(P (∇Gol

λPXZ −∇Gcl

λPXZ), X) = ∇Z(Golλ)(PX, PX).

By the first part of lemma 4.4 we have

P (∇Gol

λPXZ −∇Gcl

λPXZ) = − 1
2PG

♯
cl ◦ (B♭(λPX + Z) − B

♭(λPX) − B
♭(Z)).

Substituting equation (16) we get

2Gol(−
1
2PG

♯
cl ◦ (B♭(λPX + Z) − B

♭(λPX) − B
♭(Z)), X) = ∇Z(Golλ)(PX, PX),

which can be written as

∇Z(Golλ)(PX, PX) + 〈B♭(λPX + Z) − B
♭(λPX) − B

♭(Z), λPX〉 = 0.

From the definition of the flat operation we have 〈B♭(Y ), X〉 = B(X, Y, Y ). Also recall

that the gyroscopic tensor is antisymmetric in the first two elements. We can then

expand the right hand side of the previous equation to get

∇Z(Golλ)(PX, PX) = B(λPX, Z, λPX) = −〈B(λPX, λPX), Z〉.

Notice that Golλ and ∇Z(Golλ) are both symmetric (0, 2) tensors. Thus we have

∇Z(Golλ)(PX, PY ) + 1
2 〈B(λPX, λPY ) + B(λPY, λPX), Z〉 = 0,

for all X, Y ∈ Γω(TQ) as claimed. Now, for the second part of the proof, we have

LλPXGcl(Z, Z) = Gcl(∇
Gcl

λPXZ, Z) + Gcl(Z,∇Gcl

λPXZ)

= 2Gcl(∇
Gcl

λPXZ, Z)

= 2Gcl(∇
Gcl

Z λPX − [Z, λPX ], Z)

= 2Gcl(∇
Gcl

Z λPX, Z) − 2Gcl([Z, λPX ], Z).

As a result

LλPXGcl(Z, Z) + 2Gcl([Z, λPX ], Z) = 2Gcl(∇
Gcl

Z λPX, Z)

= 2LZGol(PX, Z) − 2Gol(PX,∇Gcl

Z Z)

= 2LZGol(PX, Z) − 2Gol(X, P∇Gcl

Z Z).

Now, from the kinetic energy shaping system of partial differential equations, we have

P∇Gcl

Z Z = P∇Gol

Z Z + PG
♯
clB

♭(Z).

Therefore,

LλPXGcl(Z, Z) + 2Gcl([Z, λPX ], Z)

= 2LZGol(PX, Z) − 2Gol(X, P∇Gol

Z Z + PG
♯
clB

♭(Z))

= 2Gol(∇
Gol

Z PX, Z) + 2Gol(PX,∇Gol

Z Z) − 2Gol(X, P∇Gol

Z Z + PG
♯
clB

♭(Z)).
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This gives

LλPXGcl(Z, Z) + 2Gcl([Z, λPX ], Z) = 2Gol(∇
Gol

Z PX, Z) − 2〈λPX, B♭(Z)〉.

A simple computation gives the desired conclusion.

(2) ⇒ (1): We have to prove that if λ = G
♯
cl ◦ G♭

ol and if Gcl and B satisfy the

set of extended λ equations and the closed-loop metric equation given in part 2 of

the theorem, then (Gcl, B) is a solution to the kinetic energy shaping problem. We

compute

Gol(P (∇Gol

X X −∇Gcl

X X + G
♯
clB

♭(X)), Z)

= Gol(∇
Gol

X X −∇Gcl

X X + G
♯
clB

♭(X), PZ)

= Gol(∇
Gol

X X, PZ) − Gcl(∇
Gcl

X X, λPZ) + 〈B♭(X), λPZ〉

= LXGol(X, PZ) − Gol(X,∇Gol

X PZ)

− LXGcl(X, λPZ) + Gcl(X,∇Gcl

X λPZ) + 〈B♭(X), λPZ〉

= −Gol(X,∇Gol

X PZ) + Gcl(X,∇Gcl

X λPZ) + 〈B♭(X), λPZ〉

= −Gol(X,∇Gol

X PZ) + Gcl(X,∇Gcl

λPZX) + Gcl(X, [X, λPZ]) + 〈B♭(X), λPZ〉

= −Gol(X,∇Gol

X PZ) + 1
2LλPZGcl(X, X) + Gcl(X, [X, λPZ]) + 〈B♭(X), λPZ〉

= −Gol(X,∇Gol

X PZ) + Gol(∇
Gol

X PZ, X)− 〈λPZ, B♭(X)〉 + 〈B♭(X), λPZ〉

= 0,

As a result,

P (∇Gol

X X −∇Gcl

X X + G
♯
clB

♭(X)) = 0,

as desired.

From part 2 of the previous theorem we see that the kinetic energy shaping partial

differential equation is equivalent to two partial differential equations, one for λ and

one for obtaining Gcl from λ. We will study these partial differential equations in

detail later in the paper, but for now let us define them.

Definition 4.5. Let Q be an n-dimensional manifold and let G ∈ Γω(S+
2 T∗Q) be

a metric on Q. Let W ⊂ T∗Q be a subbundle and let P be the associated G-orthogonal

projection map as in Section 2. The following set of partial differential equations with

λ ∈ Γω(T∗Q ⊗ TQ) and B a gyroscopic (0, 3)-tensor field as dependent variables is

called the (extended) λ-equation:

(17) ∇G

Z(Gλ)(PX, PY ) + 1
2 〈B(λPX, λPY ) + B(λPY, λPX), Z〉 = 0,

where X, Y ∈ Γω(TQ).

Definition 4.6. Let Q be an n-dimensional manifold and let G ∈ Γω(S+
2 T∗Q)

be a metric on Q. Let W ⊂ T∗Q be a subbundle and P ∈ Γω(T∗Q ⊗ TQ) be the
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associated projection map as above. Also let λ ∈ Γω(T∗Q ⊗ TQ) and let B be a

gyroscopic (0, 3)-tensor field on Q. The following set of partial differential equations

with Gcl ∈ Γω(S2T
∗Q) as unknown is called the (extended) closed-loop metric

equation:

(18) ∇G

λPXGcl(Z, Z) + 2Gcl(∇
G

ZλPX, Z) = 2G(∇G

ZPX, Z) − 2〈λPX, B♭(Z)〉,

for X, Y, Z ∈ Γω(TQ).

It is clear that the λ-equation is a first-order linear systems of partial differential

equations. The word extended is due to the presence of gyroscopic forces. Theorem

4.3 is an intrinsic version of what has been presented in [4]. Different versions of the

proof have been given in [5, 3] and modified with presence of gyroscopic forces in [13].

One should note that, by solving the λ-equations, we only obtain the restriction of

λ to Γω(W⊥ ⊗ T∗Q), but only this restriction of λ appears in the statement of the

extended closed-loop metric equation.

Remark 4.7. Note that there is no assumption on the positive definiteness of the

closed-loop metric. In other words, one may very well achieve a closed-loop metric

which is not positive definite, but which could possibly lead to a stabilizing energy

shaping feedback.

According to Definition 2.2, the energy shaping problem can proceed in two steps:

first, kinetic energy shaping and then potential energy shaping. As in [4], we assume

that one solves the energy shaping problem in the following steps:

1. Find the set of pairs (λ, B) which satisfy the extended λ-equations.

2. The system of partial differential equations (2b) form Theorem 4.3 with Gcl

as unknown is called the (extended) closed-loop metric system of equations.

So we use the set of solutions to the λ-equations to find a closed-loop metric

Gcl as a solution to the extended closed-loop metric system of equations. This

closed-loop metric will be a solution to the kinetic energy shaping problem

by the statement of the theorem. Moreover, all the solutions to the kinetic

energy shaping problem can be produced by this procedure.

3. Check if the set of Gcl, or equivalently the set of solutions to the λ-equations

satisfies the sufficient condition of potential energy shaping problem, equa-

tion (21). If so, one can find a formal solution to the potential energy shaping

partial differential equation.

One of our main goals in this paper is to show that a bad choice for the closed-loop

metric can make it impossible to find a solution for the energy shaping problem. In

order to identify the space of solutions to the energy shaping problem, one should con-

sider together the compatibility conditions of the kinetic energy shaping and potential

energy shaping problem. In the coming sections we use the language of geometric par-

tial differential equations to analyze the integrability of the complete set of partial

differential equations.
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4.3. The λ-method partial differential equations. In this section, we for-

mulate the two partial differential equations for the λ-method in the language of jet

bundles. We make the simplifying assumption in this section that B = 0. Assume

that W is an (n−m)-dimensional integrable subbundle of T∗Q where m is the number

of unactuated directions.

4.3.1. The equation RL. With the assumptions above, the set of λ-equations

we consider in this section is

∇G

Z(Gλ)(PX, PX) = 0, X, Z ∈ Γω(TQ),

where λ ∈ Γω(T∗Q ⊗ TQ), G is a metric on Q and P ∈ Γω(T∗Q ⊗ TQ) is the G-

orthogonal projection as before. We denote by W⊥ the G-orthogonal complement of

W and by λ|P the restriction of λ to W⊥⊗TQ. Consider the bundle π : W⊥⊗TQ → Q

and let (q, λ|P (q)) be a typical fiber element over q ∈ Q. We define the bundle map

Φ :J1π → T∗Q ⊗W⊥ ⊗W⊥

j1λ|P 7→ ∇G(Gλ)|ImP⊗2 ,(19)

In an adapted coordinate system (qi, λi
a) on W⊥ ⊗ TQ and (qi, λi

a, λi
a,k) on J1π,

Φ(qi, λi
a, λi

a,k) = (qi, Gaiλ
i
b,k + Gai,kλi

b − Ss
kaGsiλ

i
b − Ss

kbGsiλ
i
a),(20)

where S is the coefficient of the Levi-Civita connection associated to G, and k ∈

{1, · · · , n}, a, b ∈ {1, · · · , m}. Thus we define

RL
.
= {p ∈ J1(π) | Φ(p) = 0}.

to be the submanifold of J1π corresponding to the λ-equation.

4.3.2. The equation RE. With the assumptions above, the closed-loop metric

equation is

∇G

λPXGcl(Z, Z) + 2Gcl(∇
G

ZλPX, Z) = 2G(∇G

ZPX, Z),

for X, Y, Z ∈ Γω(TQ). Consider the bundle (S2T
∗Q, π, Q) and let W and P be,

respectively, the integrable control codistribution and the G-orthogonal projection,

respectively, as in Section 2. Let λ be an automorphism of TQ and denote a section

of W⊥ ⊗ TQ by λ|P . In adapted local coordinates, λ|P = λj
aea ⊗ ej , where a ∈

{1, · · · , m} and j ∈ {1, · · · , n}. Define the bundle map Υ1 : J1π → T∗Q ⊗ S2T
∗Q by

Υ1(j1Gcl) = ∇GGcl. Also define a bundle map

Υ0 : S2T
∗Q → W⊥ ⊗ S2T

∗Q,

by

Υ0(X, Z, Z) = 2Gcl(∇
G

ZλPX, Z) − 2G(∇G

ZPX, Z),
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Let ΨE : T∗Q⊗ S2T
∗Q → W⊥ ⊗ S2T

∗Q be the bundle map given in local coordinates

by

ΨE(β ⊗ A) = λj
aβje

a ⊗ A,

where a ∈ {1, · · · , m}, j ∈ {1, · · · , n}, β ∈ Γω(T∗Q) and A ∈ Γω(S2T
∗Q). Observe

that the map ΨE is surjective. Finally, define ΦE = ΨE ◦Υ1 + Υ0. Thus RE = kerΦE

gives the extended closed-loop metric system of partial differential equations.

4.4. Potential energy shaping. In this section, we explore aspects of potential

energy shaping. Firstly, we recall the result of Lewis [25] regarding potential shap-

ing after kinetic shaping has been done. Then, we couple the sufficient conditions

of Lewis [25] with the λ-equations from the previous section. In this way, we can

understand how kinetic energy shaping can influence potential energy shaping.

4.4.1. Sufficient conditions for potential energy shaping. We recall the

results for potential energy shaping after kinetic energy shaping from [25]. Denote

the bundle automorphism G♭
ol ◦G

♯
cl by Λcl. Define an integrable codistribution Wcl =

Λ−1
cl (Wol). Let (PS

.
= Q × R, π, Q) be the trivial vector bundle over Q, so that a

section of π corresponds to a potential function via the formula q 7→ (q, V (q)). We

define a T∗Q-valued differential operator Dd(V ) = dV which induces a vector bundle

map Φpot : J1π → T∗Q such that Dd(V )(q) = Φpot(j1V (q)). Similar to what we did

for kinetic energy shaping we denote by

πWcl
: T∗Q → T∗Q/Wcl,

as the canonical projection.

Definition 4.8. Let Σol = (Q, Gol, Vol,Fol,Wol) be an open-loop simple mechan-

ical control system. The submanifold Rpot ⊂ J1π defined by

Rpot = {p ∈ J1π | πWcl
◦ Φpot(p) = πWcl

◦ Λ−1
cl dVol}.

is called the potential energy shaping submanifold.

Let π1 : J1π → Q be the canonical projection. Lewis [25] gives a set of sufficient

conditions under which the potential shaping problem has a solution. The proof

follows from the integrability theory of partial differential equations; in particular,

the potential energy shaping partial differential equation has an involutive symbol.

We recall the definition of (Gol-Gcl)-potential energy shaping feedback from [25].

Definition 4.9. A section F of W is called a (Gol-Gcl)-potential energy

shaping feedback if there exists a function Vcl on Q such that

F(q) = ΛcldVcl − dVol, q ∈ Q.

The following results implies when one can construct a Taylor series solution to

the potential energy shaping partial differential equation order-by-order.
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Theorem 4.10. Let Σol = (Q, Gol, Vol,Fol,Wol) be an analytic open-loop simple

mechanical control system. Let Gcl be a closed-loop analytic metric. Let p0 ∈ Rpot and

let q0 = π1(p0). Assume that q0 is a regular point for Wol and that Wcl = Λ−1
cl Wol is

integrable in a neighborhood of q0. Then the following statements are equivalent:

1. there exists a neighborhood U of q0 and an analytic (Gol-Gcl) -potential energy

shaping feedback F ∈ Γω(W) defined on U which satisfies

Φpot(p0) = ΛcldV (q0) − dVol(q0) + Λ−1
cl dVol(q0),

for a solution V to Rpot;

2. there exists a neighborhood U of q0 such that d(Λ−1
cl dVol)(q) ∈ I2(Wcl|q), where

we denote I2(Wcl|q) = I(Wcl|q) ∩ Λ2(T
∗
qQ) where the algebraic ideal I(Wcl|q)

of Λ(T∗
qQ) is generated by elements of the form γ ∧ ω where γ ∈ Wcl|q.

The theorem gives a set of compatibility conditions for the existence of a (Gol-

Gcl)-potential energy shaping feedback. Moreover, one can give a full description of

the set of achievable potential energy shaping feedbacks. Let αcl = Λ−1
cl dVol. Let us

use a coordinate system (q1, · · · , qn) on U a neighborhood of q0 such that

Wcl|q0 = Span(dqm+1, · · · , dqn).

In these local coordinate we write the one form αcl as αcl = αjdqj and compatibility

conditions become:

(21)
∂αj

∂qi
−

∂αi

∂qj
= 0 , i, j ∈ {1, · · · , m}.

Remark 4.11. One can make the following observations from the potential energy

shaping problem.

1. The choice of Gcl affects the set of solutions that one might get for poten-

tial energy shaping. A bad choice of Gcl might make it impossible to find

any potential energy shaping feedback. As a result, if one is able to have

an understanding of the set of closed-loop energy shaping metrics, then the

condition given by equation (21) is an obstruction that detects the closed-

loop energy shaping metrics for which their exists a potential energy shaping

feedback. We give a complete description of this problem in Section 7.

2. Following [24], if we denote the set of all solutions for the potential shaping

problem by

PSq0 = {Vcl⊕Fcl ∈ Cω(Q)⊕Γω(Wcl) | dVcl = Fcl +Λ−1
cl dVol , Vcl(q0) = 0},

one can describe the whole set of solutions as an affine subspace of Cω(Q) ⊕

Γω(Wcl) modeled on the subspace

L(PSq0) = {f ⊕ β ∈ Cω(Q) ⊕ Γω(Wcl) | df = β}.
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4.4.2. The equation RT. The sufficient condition for integrability of the partial

differential equation in potential energy shaping, given in equation (21), is a nonlinear

partial differential equation with the dependent variable Λ = G♭
ol ◦G

♯
cl. The following

commutative diagram shows the relation between λ and Λ:

T∗Q
Λ //

G
♯
ol

��

T∗Q

G
♯
ol

��
TQ

λ // TQ

Any condition on Λ imposes conditions on λ and vice versa. Through these conditions,

we can find the obstruction that the potential energy shaping integrability condition

imposes on the set of solutions to the λ-equations. For more information about the

procedure we propose for energy shaping, see Section 8. We make some algebraic

constructions before moving to the potential energy shaping problem.

An algebraic construction Let V be a finite-dimensional R-vector space and

denote the dual vector space by V∗. Let D be a subspace of V∗. The algebraic ideal

I(D) of Λ(V∗) is generated by elements of the form γ ∧ ω where γ ∈ D. For k ∈ Z we

denote Ik(D) = I(D) ∩ Λk(V∗). For Θ ∈ Aut(V∗), we wish to understand I2(Θ(D)).

Lemma 4.12. We have I2(Θ(D)) = (Θ ⊗ Θ)(I2(D)).

Proof. Let {v1, · · · , vn} be a basis for V, and suppose that

D = Span{vm+1, vm+2, · · · , vn}.

One can identify I2(Θ(D)) by

I2(Θ(D)) = Span{Θ(vj) ∧ Θ(vi) | m + 1 ≤ j ≤ n , 1 ≤ i ≤ n},

If one extends Θ to Θ ⊗ Θ on V∗ ⊗ V∗ in the usual way we have

Θ ⊗ Θ(I2(D)) = Span{Θ(vj) ∧ Θ(vi) | m + 1 ≤ j ≤ n , 1 ≤ i ≤ n},

as desired.

Lemma 4.13. Let α be an analytic local section of (T∗Q, π, Q) in a neighborhood

U of Q and let D ⊂ T∗Q be a subbundle. Then dα ∈ I2(Θ(D)) if and only if

Θ−1 ⊗ Θ−1(dα) ∈ I2(D).

Proof. Note that (Θ ⊗ Θ)−1 = Θ−1 ⊗ Θ−1 and so the proof follows from the

previous lemma.

Proposition 4.14. Let Q be an n-dimensional manifold and let β 6= 0 and α be

analytic local sections of T∗Q such that α = Θ(β), where Θ ∈ Aut(T∗Q). Let U be a

neighborhood of p ∈ Q. Given D, an integrable subbundle of T∗Q, with adapted local
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coordinates {dqm+1, · · · , dqn} as above, we have dα ∈ I2(Θ(D)) in this neighborhood

if and only if

(

∆k
i ∆p

j − ∆k
j ∆p

i

)

(

∂Θl
k

∂xp
βl + Θl

k

∂βl

∂xp

)

= 0,

where i, j, k ∈ {1, · · · , m} and we denoted the Θ−1 by ∆.

Proof. Using Lemma 4.13 we have

dα = ∆k
i ∆p

j

(

∂Θl
k

∂xp
βl + Θl

k

∂βl

∂xp

)

dqi ∧ dqj .

The proof follows since Λ2T
∗Q = I2(D) ⊕ Λ2(D

⊥).

Partial differential equation We consider the system of partial differential

equations of Proposition 4.14 with the automorphism Θ as unknown. One can easily

observe that this system of partial differential equation is equivalent to the system of

partial differential equations one would obtain by assuming equation (21) as a partial

differential equation with unknown Λ−1. We consider nonlinear partial differential

equations as described briefly in Section 3.1. More details on the formal integrability

of nonlinear systems of partial differential equations can be found in [19].

Let (Q, G) be an n-dimensional Riemannian manifold and let W ⊂ T∗Q be a

subbundle. Consider the vector bundle (π, (W⊥ ⊗Q TQ) ⊕ (W⊥ ⊗Q TQ), Q) with a

typical fiber (q, Θ(q) ⊕ ∆(q)) and denote its first jet bundle by J1π. We define the

following system of partial differential equations in a neighborhood U of q0 ∈ Q:

RT = {j1(Θ ⊕ ∆) ∈ J1π | ΦT(j1(Θ ⊕ ∆)) = 0},

where ΦT can be written in adapted local coordinates

ΦT(j1(Θ ⊕ ∆)) =
(

∆k
i ∆r

j − ∆k
j ∆r

i

)

(

∂Θl
k

∂qr
βl + Θl

k

∂βl

∂qr

)

,

where i, j, k ∈ {1, · · · , m} and β ∈ Γω(T∗Q). This system of partial differential

equations is quasi-linear and so we need to use Definition 3.7 to find the symbol. We

look at the linearization of the partial differential equation about a given reference

point. Let (q, Θ̄(q) ⊕ ∆̄(q)) be a typical fiber of π. If we linearize the system about

this point we have

d

dt

∣

∣

∣

t=0

((

(∆k
i t + ∆̄k

i )(∆p
j t + ∆̄r

j) − (∆k
j t + ∆̄k

j )(∆p
i t + ∆̄r

i )
)

×

[

∂(Θl
kt + Θ̄l

k)

∂qr
βl + (Θl

kt + Θ̄l
k)βl

))

=
(

∆k
i ∆̄r

j + ∆r
j∆̄

k
i − ∆k

j ∆̄r
i − ∆r

i ∆̄
k
j

) ∂̄Θ
l
k

∂qr
βl

+
(

∆̄k
i ∆̄r

j − ∆̄k
j ∆̄r

i

)

(

∂Θl
k

∂qr
βl + Θl

k

∂βl

∂qr

)

.
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The effect on the reference point of the linearization should be investigated carefully.

For now, we consider the linearization of the system about a point p ∈ J1π with

π1
0(p) = (id|TQ⊗QW⊥ ⊗ id|TQ⊗QW⊥). The reason for this choice is that the identity

solution for Θ refers to the open-loop system which is always a solution to the energy

shaping problem. Thus we study the linearization of the nonlinear system about the

open-loop solution. We have the following linearization of ΦT about p:

(22) Vp(ΦT)(j1(Θ ⊕ ∆)) =

(

∂Θl
i

∂qj
βl −

∂Θl
j

∂qi
βl

)

+ (Θl
i

∂βl

∂qj
− Θl

j

∂βl

∂qi
),

where we utilized the fact that VJ1π ∼= J1Vπ [27].

5. Formal integrability of RL. In this section, we apply the theorem of Gold-

schmidt, Theorem 3.20, to the λ-equations. The main result in this section is The-

orem 5.6 which gives sufficient conditions for formal integrability of the λ-equations.

The proof of this theorem requires the machinery of Section 3.1. However, the main

result can be understood without understanding the details of the proof.

5.1. The symbol of RL. The symbol map σ(RL) : T∗Q ⊗W⊥ ⊗ TQ → T∗Q ⊗

W⊥ ⊗W⊥ is defined by

σ(RL)(A)(X, PY, PZ) = A(X, PY, G♭(PZ)), A ∈ Γω(T∗Q ⊗W⊥ ⊗ TQ),

where X, Y, Z ∈ Γω(TQ). This can be shown using the affine structure of J1π as

follows. Take p1, p2 ∈ J1π such that π1
0(p1) = π1

0(p2). Then p1 − p2 ∈ Γω(T∗Q ⊗

W⊥ ⊗ TQ) by the affine structure of J1π. Now one can define the symbol map to be

Φ(p2 − p1). Using equation (20), one can observe in local coordinates that Φ(p1 − p2)

is the highest order term of the partial differential equations since π1
0(p1) = π1

0(p2).

Let us determine the symbol G1(RL) and its prolongation.

Lemma 5.1. The following sequence is short exact:

(23) 0 // G1(RL) // T∗Q ⊗W⊥ ⊗ TQ
σ(RL) // T∗Q ⊗W⊥ ⊗W⊥ // 0

Proof. The symbol map is surjective since σ(RL) = idT∗Q⊗W⊥ ⊗ (G♭ ◦ P ).

Let {e1, · · · , en} be a basis for T∗
q0

Q for q0 ∈ Q and let Σj be the subspace of

T∗
q0

Q generated by {ej+1, · · · , en}. Then we have the following lemma, similar to

Lemma 5.1.

Lemma 5.2. The following sequence is short exact:

0 // G1,j(RL) // Σj ⊗W⊥ ⊗ TQ
σ(RL) // Σj ⊗W⊥ ⊗W⊥ // 0

where G1,j(RL) = G1(RL) ∩ Σj.

The following lemma characterizes the prolonged symbol ρ1(G1(RL)).
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Lemma 5.3. The following sequence is short exact:

0 // ρ1(G1(RL)) // S2T∗Q ⊗ W⊥ ⊗ TQ

ρ1(σ(RL))//
T∗Q ⊗ T∗Q ⊗ W⊥ ⊗ W⊥

τ // C // 0

where C ∼= Λ2T∗Q ⊗W⊥ ⊗W⊥ and τ is given by

(24) τ(A)(X1, X2, Y1, Y2) = A(X1, X2, Y1, Y2) − A(X2, X1, Y1, Y2).

Proof. Note that τ is the alternation map up to a constant coefficient and so is

surjective. Moreover, we have

ρ1(G1(RL))(A)(X1, X2, Y1, Y2) = A(X1, X2, Y1, G
♭Y2),

as a consequence of the fact that τ ◦ ρ1(G1(RL)) is zero since A is symmetric in the

first two elements.

Lemma 5.4. The symbol G1(RL) is involutive.

Proof. We will show that the basis {e1, · · · , en} is a quasi-regular basis. This is

just a dimension count. From Lemmata 5.1 and 5.2 we have

dim(G1(RL)) = nm(n − m),

dim(G1,j(RL)) = (n − j)m(n − m).

We compute

dim(G1(RL)) +

n−1
∑

j=1

dim(G1,j(RL)) = 1
2nm(n + 1)(n − m),

which is precisely dimension of ρ1(G1(RL)) using Lemma 5.3.

5.2. Involutivity of RL.

Theorem 5.5. The set of λ-equations RL is involutive if, for p ∈ RL, we have

τ(ρ1(Φ)(p2) − 0) = 0,

where p2 is any point in J2(π) that projects to p.

Proof. Note that ρ1(G1(RL)) is isomorphic to S2T
∗Q ⊗W⊥ ⊗ G♯W . Therefore,

it is a vector bundle on the open subset for which G
♯W is a vector bundle. Let C

be the cokernel of ρ1(σ(Φ))). Then G(RL) is involutive and so the system of partial

differential equations RL is involutive if the curvature map κ : RL → C, defined as in

equation (4), is zero. We have the following exact commutative diagram:

0 // ρ1(G1(RL)) //

��

S2T∗Q ⊗ W⊥ ⊗ TQ

ρ1(σ(Φ))//

��

T∗Q ⊗ T∗Q ⊗ W⊥ ⊗ W⊥
τ //

��

C // 0

0 // ρ1(RL) //

��

J2(π)
ρ1(Φ) //

��

J1(π′)

��
0 // RL

// J1(π)
Φ //

T∗Q ⊗ W⊥ ⊗ W⊥
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Let p ∈ RL so that π(p) = q for q ∈ Q. Therefore, Φ(p) = 0. Take p2 ∈ J2(π)

projecting to p and define ξ = ρ1(Φ)(p2) ∈ J1(π
′). By commutativity of the diagram,

ξ projects to 0 ∈ T∗Q⊗W⊥⊗W⊥, so we take κ(p) = τ(ξ−0). It is easy to show that

the definition of κ is independent of the choice of p2 [27, 28]. By the discussion in

Section 3.1, p is in the image of the projection of ρ1(RL) to RL if and only if κ(p) = 0.

Using Theorem 5.5 and the map defined by equation (24), we can write the

following intrinsic formula for κ:

κ(j1λ)(Z, W, PX, PY ) =

∇G

W [∇G

Z(Gλ)(PX, PX)] −∇G

Z [∇G

W (Gλ)(PX, PX)] −∇G

[W,Z](Gλ)(PX, PX).(25)

This leads to the following theorem which gives an explicit expression for the com-

patibility conditions of the λ-equations.

Theorem 5.6. Let (Q, G) be an analytic Riemannian manifold of dimension n

and let S be the Levi-Civita connection on Q with the associated curvature tensor

R. Let W ⊂ T∗Q be a given analytic subbundle and let P ∈ Γω(T∗Q ⊗ TQ) be the

associated G-orthogonal projection as above. If the partial differential equation

(Gλ)(R(PX, PX)W, Z) + (Gλ)(W, R(PX, PX)Z)+

2∇G

Z(Gλ)(∇G

W PX, PX)− 2∇G

W (Gλ)(∇G

ZPX, PX)) = 0(26)

is satisfied in a neighborhood of λ0 ∈ Γω(T∗Q ⊗ TQ), then the set of λ-equations has

a solution in a neighborhood of λ0. Moreover, any solution to the λ-equations will

satisfy equation (26).

Proof. From Theorem 5.5 and involutivity of the symbol of RL, a sufficient con-

dition for the existence of solutions to the λ-equations is that the curvature map be

zero. We have

∇G

Z(Gλ)(PX, PX) = G((∇G

Zλ)(PX), PX),

for all X, Z ∈ Γω(TQ). Thus

∇G

W [∇G

Z(Gλ)(PX, PX)] = ∇G

W [G((∇G

Zλ)(PX), PX)]

= G(∇G

W (∇G

Zλ(PX)), PX) + G(∇G

Zλ(PX),∇G

W PX),

where X, Z, W ∈ Γω(TQ). Therefore,

∇G

W [∇G

Z(Gλ)(PX, PX)] = G(∇G

W (∇G

Zλ(PX)), PX) + G(∇G

Zλ(PX),∇G

W PX).

As a result,

∇G

W [∇G

Z(Gλ)(PX, PX)]

= G(∇G

W∇G

Zλ(PX), PX) + 2∇G

Z(Gλ)(∇G

W PX, PX).(27)
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We conclude that

∇G

W [∇G

Z(Gλ)(PX, PX)] −∇G

Z [∇G

W (Gλ)(PX, PX)] −∇G

[W,Z](Gλ)(PX, PX)

= G(∇G

W∇G

Zλ(PX), PX) − G(∇G

Z∇
G

W λ(PX), PX) − G(∇G

[W,Z]λ(PX), PX)+

+ 2∇G

Z(Gλ)(∇G

W PX, PX)− 2∇G

W (Gλ)(∇G

ZPX, PX).

Finally, using the Ricci identity and Theorem 5.5, we have the following sufficient

condition for the existence of solutions:

(Gλ)(R(PX, PX)W, Z) + (Gλ)(W, R(PX, PX)Z)

+ 2∇G

Z(Gλ)(∇G

W PX, PX)− 2∇G

W (Gλ)(∇G

ZPX, PX) = 0.

The necessity of this condition is clear since any solution of the λ-equation satisfies

equation (25) by definition.

6. Formal integrability of RE. We prove that the system of partial differ-

ential equations for the closed-loop metric has an involutive symbol and is formally

integrable under a certain surjectivity condition. An additional assumption is that

λ(TQ/(G♯
olW)) is integrable. Recall that a similar assumption has been used in Theo-

rem 4.10. The main result here is Theorem 6.6. Again, this result can be understood

separately from the details of its proof.

6.1. The symbol of RE. We have the symbol map σ(RE) : T∗Q ⊗ S2T
∗Q →

W⊥ ⊗ S2T
∗Q for the partial differential equation RE given by

σ(RE)(β ⊗ A) = λj
aβje

a ⊗ A

in local coordinates.

Lemma 6.1. We have G(RE)
.
= ker(σ(RE)) ∼= W ⊗ S2T

∗Q.

Proof. Note that λ is an isomorphism, so ker(σ(RE)) is of dimension (n − m) ×

(n × (n + 1)/2) and so is isomorphic to W ⊗ S2T
∗Q as claimed.

Let {e1, e2, · · · , en} be a basis for T∗
q0

Q such that {e1, · · · , en−m} spans W and

let Σj be the subspace of T∗
q0

Q generated by {ej+1, · · · , en}. Consider the restriction

σ(RE)|Σj
: Σj ⊗ S2T

∗Q → W⊥ ⊗ S2T
∗Q,

of the symbol map to Σj ⊗ S2T
∗Q. We have the following lemma:

Lemma 6.2. We have

G(RE)1,j
.
= ker(σ(RE)|Σj⊗S2T∗Q) = (Σj ∩W) ⊗ S2T

∗Q.

Proof. The proof follows along the same lines as that of Lemma 6.1.

In local coordinates, the prolongation of the symbol map

ρ1(σ(RE)) : S2T
∗Q ⊗ S2T

∗Q → T∗Q ⊗W⊥ ⊗ S2T
∗Q,
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is given by

ρ1(σ(RE))(Π ⊗ A) = λj
aΠjk ⊗ A,

where Π ∈ Γω(S2T
∗Q).

Lemma 6.3. The following sequence is short exact:

S2T
∗Q ⊗ S2T

∗Q
ρ1(σ(RE))// T∗Q ⊗W⊥ ⊗ S2T

∗Q
τ // Λ2W

⊥ ⊗ S2T
∗Q // 0

where τ is the canonical projection onto cokernel of ρ1(σ(RE)).

Proof. Recall that

S2T
∗Q = S2W ⊕ S2W

⊥ ⊕ (W ⊗W⊥).

By using the definition of ρ1(σ(RE)), the kernel of ρ1(σ(RE)) is isomorphic to S2W ⊗

S2T
∗Q. Moreover, we have

Im(ρ1(σ(RE))) ∼= (S2W
⊥ ⊕ (W ⊗W⊥)) ⊗ S2T

∗Q.

Therefore, the cokernel of ρ1(σ(RE)) is isomorphic to Λ2W
⊥ ⊗ S2T

∗Q.

Proposition 6.4. The symbol of RE is involutive.

Proof. Let {e1, · · · , en} be a basis for T∗
q0

Q for q0 ∈ Q and let Σj be the subspace

of T∗
q0

Q generated by {ej+1, · · · , en}. We show that this yields a quasi-linear basis

for T∗
q0

Q RE. Using Lemmata 6.1 and 6.2 we have

dim(G(RE)) = 1
2 (n − m)n(n + 1),

dim(G(RE)1,j) =

{

1
2 (n − m − j)n(n + 1), 1 ≤ j < n − m,

0, n − m ≤ j < 0.

We compute

dim(G(RE)) +
n−m
∑

j=1

dim(G(RE)1,j) = 1
4n(n − m)(n − m + 1)(n + 1),

which is equal to dim(ρ1(G(RE))) by Lemma 6.3, as required.

6.2. Involutivity of RE. The following theorem applies Goldschmidt’s theorem

to RE.

Theorem 6.5. The partial differential equation RE is involutive if, for p ∈ RE,

we have

τ(ρ1(p2) − 0) = 0,

where p2 is any point in J2(π) that projects to p.

Proof. Since the symbol is involutive, the proof follows along the same lines as

that of Theorem 5.5.
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One can construct the curvature map similar to the one for RL:

κ(j1Gcl)(λPX, λPY, Z, Z) =

∇G

λPY [∇G

λPX(Gcl)(Z, Z)] −∇G

λPX [∇G

λPY (Gcl)(Z, Z)] −∇G

[λPY,λPX](Gcl)(Z, Z).(28)

Note that since λ(TQ/(G♯
olW)) is integrable by assumption, there exists a ζ ∈ Γω(TQ)

such that [λPY, λPX ] = λPζ. We state the following theorem which implies the

obstruction to finding a closed-loop metric.

Theorem 6.6. Let (Q, G) be an analytic Riemannian manifold of dimension n

and let S be the Levi-Civita connection on Q with associated curvature tensor R. Let

W ⊂ T∗Q be an analytic integrable subbundle and let P ∈ Γω(T∗Q ⊗ TQ) be the

associated G-orthogonal projection as above. Let λ be an automorphism on TQ so

that λ(TQ/(G♯W)) is integrable. If the first-order partial differential equations

(29) 2∇G

λPY (Gcl)([Z, λPX ], Z) − 2∇G

λPX(Gcl)([Z, λPY ], Z)

+ 2Gcl(∇
G

λPY (∇G

ZλPX) −∇G

λPX(∇G

ZλPY ), Z)

+ 2G(∇G

λPY (∇G

ZPX) −∇G

λPX(∇G

ZPY ), Z)

+ 2Gcl(∇
G

λPY Z,∇G

ZλPX) − 2Gcl(∇
G

λPXZ,∇G

ZλPY ) + 2G(∇G

λPXZ,∇G

ZλPY )

− 2Gcl(∇
G

λPY Z,∇G

ZλPX) + 2Gcl(∇
G

Zλζ, Z) − 2G(∇G

Zζ, Z) = 0

are satisfied in a neighborhood of Gcl ∈ Γω(S2T
∗Q) for X, Y, Z ∈ Γω(TQ) and ζ ∈

Γω(TQ) as above, then the set of closed-loop metric equations has a solution in a

neighborhood of Gcl. Moreover, any solution to the closed-loop metric equations will

satisfy equation (29).

Proof. The proof follows from a direct computation using equation (28) and the

Ricci identity (similar to Theorem 5.6). One also uses the following identity

(Gcl)(R(Z, Z)λPY, λPX) + (Gcl)(λPY, R(Z, Z)λPX) =

(G)(R(Z, Z)λPY, PX) + (G)(PY, R(Z, Z)λPX) = 0,

which holds since G is associated to S.

7. Formal integrability of RT . We prove that the system of partial differ-

ential equations relating the λ-equations to the potential energy shaping equations

is formally integrable under a surjectivity condition. The main result here is Theo-

rem 7.8. As with the previous two sections, this result can be understood separately

from the details of its proof.

7.1. The symbol of RT. The symbol map for RT can be written precisely as

the following morphism of vector bundles:

σ(RT) : π∗
1T∗Q ⊗ (π1

0)∗Vπ → Vπ′,
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where π′ denotes the bundle (π′, Λ2W
⊥, Q). If we evaluate the morphism σ at a given

point p, we obtain the following exact sequence, which characterizes the symbol,

G(RT), at p:

0 // G(RT)|p // T∗
π1(p)Q ⊗ Vπ1

0(p)(π)
σ(Φ) // VΦ(p)π

′.

Note that the linearization VΦ about a point p ∈ J1π with

π1
0(p) = (id|TQ⊗QW⊥ ⊗ id|TQ⊗QW⊥),

can be reduced to a map on J1Vπ|(W⊥⊗QTQ)⊕0 since there is no ∆ involved in the

linearization (see equation (22)). If we identify Vπk
0 (p)(π) and VΦ(p)(π

′) with (W⊥⊗Q

TQ)|π1
0(p) and Λ2(W

⊥)|Φ(p), respectively, we can write the symbol map as

σ(RT)|p : T∗
π1(p)Q ⊗ (W⊥ ⊗Q TQ)|π1

0(p) → Λ2(W
⊥)|Φ(p).

We usually drop the points of evaluation for simplicity of notation. Consider the

alternation map Alt acting on the (0, 2)-tensors and denote the restriction of 2Alt to

(W⊥ ⊗ T∗Q)|π1
0(p) by σ̌. Explicitly, if we have b ∈ W⊥

π1(p) and c ∈ T∗
π1(p)Q, then

σ̌(b ⊗ c)(u1 ⊕ u2, v1 ⊕ v2) = b(u1)c(v1 ⊕ v2) − b(v1)c(u1 ⊕ u2).

Lemma 7.1. We have ker(σ̌) = S2W
⊥ and Im(σ̌) = I2(W

⊥).

Proof. Since σ̌ is the restriction of the alternation map, one can easily observe that

ker(σ̌) = ker(Alt) ∩ (W⊥ ⊗ T∗Q). Clearly S2W
⊥ ⊂ S2T

∗Q ∩ (W⊥ ⊗ T∗Q). Moreover,

for any Θ ∈ Γω(S2T
∗Q ∩ (W⊥ ⊗ T∗Q)), we have

Θ(u1 ⊕ u2, v1 ⊕ v2) = Θ(0 ⊕ v2, u1 ⊕ u2) = Θ(0 ⊕ u2, 0 ⊕ v2).

Thus Θ ∈ Γω(S2W
⊥) and as a result we have S2T

∗Q∩(W⊥⊗T∗Q) = S2W
⊥. Recalling

that Λ2(T
∗Q) = Λ2(W) ⊕ Λ2(W

⊥) ⊕ (W ⊗ W⊥) and using the definition of σ̌, one

can observe that Im(2Alt) = Im(σ̌) ∪ Λ2(W).

The symbol map σ(RT)|p can be characterized as the following composition map:

T∗Q ⊗ (W⊥ ⊗Q TQ)
σ̃ // I2(W⊥)

p // Λ2W
⊥ ,

where p is the canonical projection of I2(W
⊥) onto Λ2W

⊥ and

σ̃(b ⊗ c ⊗ v) = β(v)σ̌(b ⊗ c),

with β ∈ T∗
π1(p)Q, b ∈ W⊥

π1(p), c ∈ T∗
π1(p)Q and v ∈ Tπ1(p)Q.

Lemma 7.2. The following sequence is short exact:

(30) 0 // G(RT) // T∗Q ⊗ (W⊥ ⊗Q TQ)
σ(RT) // Λ2(W

⊥)
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where

G(RT) ∼=
(

S2W
⊥ ⊗ TQ

)

⊕
(

(W ⊗W⊥) ⊗ TQ
)

⊕
(

Λ2W
⊥ ⊗ ann(β)

)

.

Proof. Clearly T∗Q ⊗ (W⊥ ⊗ ann(β)) ⊂ ker(σ(RT)). Lemma 7.2 yields S2W
⊥ ⊗

TQ ⊂ kerσ(RT). Finally σ̃((W ⊗ W⊥) ⊗ TQ) ⊂ ker p. The claim follows since the

image of Λ2W
⊥ ⊗ v under σ(RT) is Λ2W

⊥, where v ∈ Tπ1(p)Q/ann(β).

Let {e1, · · · , en} be a basis for T∗
π1(p)Q. Let Σj be the subspace of T∗

π1(p)Q generated

by {ej+1, · · · , en} and define M∗
j = W⊥ ∩ Σj and M∗⊥

j = W⊥ ∩ Σ⊥
j . Let I2(M

∗
j) =

I(M∗
j) ∩ Λ2(W

⊥). The following two lemmata can be proved along the same lines as

Lemma 7.2.

Lemma 7.3. The following sequence is short exact:

(31) 0 // G(RT)1,j
// Σj ⊗ (W⊥ ⊗Q TQ)

σ(RT) // I2(M∗
j)

where

G(RT)1,j
∼=
(

S2M
∗
j ⊗ TQ

)

⊕
(

((W ∩ Σj) ⊗W⊥) ⊗ TQ
)

⊕
(

((W⊥ ∩ Σj) ⊗W⊥)/S2M
∗
j ⊗ ann(β)

)

One can identify the prolongation map ρ1(σ(RT)) as

ρ1(σ(RT))(c · d ⊗ b ⊗ v) = 1
2β(v)(c ⊗ σ̌(d ⊗ b) + d ⊗ σ̌(c ⊗ b)),

where β ∈ T∗
π1(p)Q, b ∈ W⊥

π1(p), c, d ∈ T∗
π1(p)Q and v ∈ Tπ1(p)Q.

Lemma 7.4. The following sequence is short exact:

(32) 0 // ρ1(G(RT)) // S2T
∗Q ⊗ (W⊥ ⊗Q TQ)

ρ1(σ(RT))// T∗Q ⊗ Λ2W
⊥

where

ρ1(G(RT)) ∼=
(

S3W
⊥ ⊗ TQ

)

⊕
(

(W ⊗W⊥ ⊗W⊥) ⊗ TQ
)

⊕
(

(S2W ⊗W⊥) ⊗ TQ
)

⊕
(

((S2W
⊥ ⊗W⊥)/S3W

⊥) ⊗ ann(β)
)

.

Proposition 7.5. The symbol of RT is involutive.

Proof. We will show that the basis {e1, · · · , en} above is a quasi-regular basis.

Using Lemmata 7.2 and 7.3 we have

dim(G(RT)) =
m(m + 1)

2
n + mn(n − m) +

m(m − 1)

2
(n − 1),

dim(G(RT)1,j) = n
(m − j + 1)(m − j)

2
+ mn(n − m)

+ [(m − j)m −
(m − j)(m − j + 1)

2
](n − 1), j < m,

dim(G(RT)1,j) = mn(n − j), j ≥ m.
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As a result we compute

n−1
∑

j=1

dim(G(RT)1,j) + dim(G(RT)) =

m−1
∑

j=1

(

n
(m − j + 1)(m − j)

2
+ mn(n − m)

+ [(m − j)m −
(m − j)(m − j + 1)

2
](n − 1)

)

+

n−1
∑

j=m

(mn(n − j)) + n
m(m + 1)

2

+ mn(n − m) +
m(m − 1)

2
(n − 1)

=
1

6
mn(m + 1)(m + 2) + 1

2mn(n + m + 1)(n − m)

+
1

3
m(m − 1)(m + 1)(n − 1),

which is precisely dimension of dim(ρ1(G(RT))) by Lemma 7.4.

7.2. Involutivity of RT. To compute the curvature map for RT we use the

following lemma.

Lemma 7.6. The following sequence is exact:

S2T
∗Q ⊗ (W⊥ ⊗Q TQ)

ρ1(σ(RT))// T∗Q ⊗ Λ2W
⊥ τ // Λ3W

⊥ ⊕ (W ⊗ Λ2W
⊥) // 0

where τ is the projection to the coker(ρ1(σ(RT))) given by

τ(b)(v1 ⊕ v2, u, w) =

(b(v1, u, w) + b(u, w, v1) + b(w, v1, u)) + b(v2, u, w), v1, u, w ∈ W⊥, v2 ∈ W .

Proof. Recall that S2T
∗Q = S2W ⊕ S2W

⊥ ⊕ (W ⊗W⊥). Using Lemma 7.4 and

since

(

S3W
⊥ ⊗ TQ

)

⊕
(

(W ⊗W⊥ ⊗W⊥) ⊗ TQ
)

⊆ ker(ρ1(σ(RT))),

we observe that

W ⊗ Λ2W
⊥ ⊆ coker(ρ1(σ(RT))).

Moreover, by definition the image of ρ1(σ(RT)) is symmetric in the first two elements,

so one can conclude that

Λ3W
⊥ ⊆ coker(ρ1(σ(RT))).

Finally, a direct computation shows that, for any ξ ∈ Γω(T∗Q ⊗ Λ2W
⊥), there exists

an analytic section of T∗Q ⊗ Λ2W
⊥ which projects to ξ under τ .

As a consequence of the previous computations, we have the following theorem.
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Theorem 7.7. The partial differential equation RT is involutive if, for p ∈ RT,

we have

τ(ρ1(Φ)(p2) − 0) = 0,

where p2 is any point in J2π that projects to p.

Proof. The proof follows similarly to Theorem 5.5. Notice that ρ1(G1(RL)) is a

vector bundle on the open subset on which W is a vector bundle. Since G(RT) is an

involutive symbol, the system of partial differential equations RT is involutive if the

curvature map κ defined as following is zero:

(33) κ : RT → Λ3W
⊥ ⊕ (W ⊗ Λ2W

⊥),

with κ(p) = τ(ρ1(Φ)(p2)), where p2 is any point in J2(π) that projects to p.

Consider the bundle π′ : Λ2W
⊥ → Q and let p ∈ RT be such that π(p) = q

for q ∈ Q. Therefore, Φ(p) = 0. Take p2 ∈ J2(π) projecting to p and define ξ =

ρ1(Φ)(p2) ∈ J1(π
′). One can show that ξ projects to 0 ∈ Γω(Λ2W

⊥), so we take

κ(p) = τ(ξ−0). It is easy to show that the definition of κ is independent of the choice

of p2 [27, 28]. By the discussion we had in Section 3.1, p is in the projection of ρ1(RT)

to RT if and only if κ(p) = 0.

Recall the definition of Rpot from Section 4. We have the following theorem.

Theorem 7.8. Let Σol = (Q, Gol, Vol,Fol,Wol) be an analytic open-loop simple

mechanical control system. Let p0 ∈ Rpot and let q0 = π1(p0). Assume that q0

is a regular point for Wol and that there exists a bundle automorphism Θ on T∗Q

defined on a neighborhood U of q0 such that Θ satisfies the following equation in the

neighborhood U :

[κ(Θ)]rij =

(

∂2Θl
i

∂qr∂qj

∂Vol

∂ql
−

∂2Θl
j

∂qr∂qi

∂Vol

∂ql

)

+

(

∂Θl
i

∂qj

∂2Vol

∂qr∂ql
−

∂Θl
j

∂qi

∂2Vol

∂qr∂ql

)

+

(

∂Θl
i

∂qr

∂2Vol

∂qj∂ql
−

∂Θl
j

∂qr

∂2Vol

∂qi∂ql

)

+

(

Θl
i

∂3Vol

∂qr∂qj∂ql
− Θl

j

∂3Vol

∂qr∂qi∂ql

)

= 0,

where i, j ∈ {1, · · · , m}, l ∈ {1, · · · , n} and r ∈ {m + 1, · · · , n}. Then there exists

an analytic closed-loop energy shaping metric Gcl prescribed by G♭
cl = Θ ◦ G♭

ol and an

analytic (Gol-Gcl)-potential energy shaping feedback F ∈ Γω(Wol) defined on U which

satisfies Φpot(p0) = Θ−1dV (q0) − dVol(q0) + ΘdVol(q0) for a solution V to Rpot.

Proof. Observe that the system of partial differential equations RT, with Θ =

Λ−1
cl and β = dVol, prescribes the sufficient conditions for existence of a (Gol-Gcl)-

potential energy shaping feedback; see equation (21). Using Theorem 7.7, this partial

differential equation is integrable if the curvature map given by equation (33) is zero.
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A direct computation shows that the curvature map is given in local coordinates by:

[κ(Θ)] =

(

∂2Θl
i

∂qr∂qj

∂Vol

∂ql
−

∂2Θl
j

∂qr∂qi

∂Vol

∂ql
+

∂Θl
i

∂qj

∂2Vol

∂qr∂ql
−

∂Θl
j

∂qi

∂2Vol

∂qr∂ql

+
∂Θl

i

∂qr

∂2Vol

∂qj∂ql
−

∂Θl
j

∂qr

∂2Vol

∂qi∂ql
+ Θl

i

∂3Vol

∂qr∂qj∂ql
− Θl

j

∂3Vol

∂qr∂qi∂ql

)

dqr

⊗ dqi ∧ dqj ,

where i, j ∈ {1, · · · , m}, l ∈ {1, · · · , n} and r ∈ {m + 1, · · · , n}, as desired.

As an example, we discuss systems with one degree of underactuation.

Example 7.9 (Systems with one degree of underactuation). Numerous systems

considered in the literature on energy shaping have one degree of underactuation.

In [4], the authors introduce a coordinate system that transforms the system of partial

differential equations into a homogenous equation. Using the results of this section,

one can give a complete description of the system of partial differential equations with

one degree of underactuation. The following theorem shows that in this case it is

enough to find the set of bundle automorphisms which satisfy the sufficient conditions

of Theorem 5.6.

Theorem 7.10. If Σol is a simple mechanical control system with one degree of

underactuation, for each bundle automorphism which satisfies the set of λ-equations,

there exists a closed-loop metric and a closed-loop potential function which satisfies

the energy shaping system of partial differential equations.

Proof. Note that the projection map τ in Lemma 7.6 is a zero map for m =

1 and so the closed-loop metric equation is involutive by Theorem 6.6. Moreover,

equation (21) always holds for m = 1.

8. Summary. In this section we give a summary of the theorems we have ob-

tained in the previous sections. Moreover, we state a procedure that clarifies how one

should perform the energy shaping method so that certain problems—such as having

a closed-loop energy shaping metric for which no potential energy shaping is possi-

ble—will not happen. This procedure reveals some of the fundamental properties of

energy shaping partial differential equations that have not been addressed before.

1. Kinetic energy shaping: Find the set of bundle automorphisms λ on TQ

which satisfy the sufficient conditions of Theorem 5.6 and denote it by ŜK.

Use the sufficient conditions of Theorem 6.6 to find the set of λ ∈ ŜK for

which there exists a closed-loop energy shaping metric Gcl and denote it by

SK.

2. Potential energy shaping: Find the set of bundle automorphisms Θ on

T∗Q which satisfy the sufficient conditions of Theorem 7.8 and denote it by

ŜP and let

S′
P = {Θ−1 | Θ ∈ ŜP}.
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The set of bundle automorphisms S′
P induces a set of bundle automorphisms

on TQ by

SP
.
= {G

♯
olΛG

♭
ol | Λ ∈ S′

P}.

Note that by Theorem 4.10, for each λ ∈ SP there exists a Vcl which satisfies

the potential energy shaping partial differential equations.

3. Total energy shaping: The intersection SP ∩ SK yields the set of λ such

that

(a) there exists a closed-loop metric which is a solution to the kinetic energy

shaping problem and

(b) more importantly, potential energy shaping is possible, and as a result

energy shaping is possible.

4. Determine the set of closed-loop potential functions Vcl with positive definite

Hessian at the desired point. It would be interesting to have a geometric

characterization of this.
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