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ANALYTICAL AND NUMERICAL SOLUTION OF A

SUB-RIEMANNIAN OPTIMAL CONTROL PROBLEM WITH

APPLICATIONS TO QUANTUM SPIN SYSTEMS∗

AMIT K. SANYAL† , CHRISTOPHER MOSELEY‡ , AND ANTHONY BLOCH§

Abstract. Experiments in nuclear magnetic resonance (NMR) spectroscopy and NMR quantum

computing require control of ensembles of quantum mechanical systems. The controlled transfer of

coherence along a one-dimensional chain of spin systems plays a key role in NMR spectroscopy of

proteins, and spin chains have also been proposed for NMR quantum information processing. The

problem of time-optimal or energy-optimal control of these systems corresponds to finding optimal

paths on Lie groups in which evolution in only certain directions on the group can be directly

controlled. In this paper, we consider energy-optimal control of a three-spin system; this turns

out to be a sub-Riemannian optimal control problem on SO(4). The goal of this optimal control

problem is: given the initial configuration and the desired final configuration as the identity element

in SO(4), design three control inputs that steer the system from the initial configuration to the

identity I ∈ SO(4) along an extremal trajectory. We first obtain necessary conditions for the normal

extremal trajectories for both the continuous time system, and then for its discrete counterpart

obtained from a discrete variational scheme. We also obtain expressions for the control inputs, and

provide a numerical algorithm for the system which can be used to carry out accurate numerical

simulations.

1. Introduction. Experiments in nuclear magnetic resonance (NMR), such as

NMR spectroscopy and NMR quantum computing, require control of ensembles of

quantum mechanical systems. In particular, the NMR spectroscopy of proteins in-

volves transfer of coherent states along one-dimensional chains of spin systems [1].

Spin chains have been also proposed for the implementation of solid-state NMR quan-

tum computers [2]. In practice, the transfer time should be as short as possible to

minimize the effects of decoherence due to interaction with the laboratory environ-

ment, and to optimize the sensitivity of the experiments.

In [3], Yuan, Glaser and Khaneja present a method for efficient transfer of co-

herence along a linear chain of n-spin systems. The initial step in this method is
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represented by the equation
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where x1, . . . , x4 represent expectation values of unitary operators that play a key role

in the transfer, and u is the control. Yuan, Glaser and Khaneja transform this system

into an equivalent one-control system in which the optimal control corresponds to

finding a geodesic on the 2-sphere endowed with a special Riemannian metric. This

is related to previous work by Khaneja et al [4].

Motivated by this prior work, we consider a generalization of the system repre-

sented by (1) involving three controls u1, u2 and u3. The optimal control problem is

equivalent to finding sub-Riemannian geodesics [5] on the Lie group SO(4). In the spe-

cial case where u1 and u3 are fixed at unity, one recovers the system considered in [3].

We obtain the extremal solutions to this optimal control problem for both continuous

and discrete time. The discrete time results are then used to form an algorithm for a

numerical solution to this sub-Riemannian optimal control problem. This algorithm

provides a way to compute optimal controls for the state transfer problem considered

in the first part of [3] and other similar state transfer problems for the three-spin

system.”

This paper is organized as follows. Section 2 introduces the continuous sub-

Riemannian optimal control problem on SO(4). In Section 3, we obtain extremal

trajectories for the continuous optimal control problem using Pontryagin’s maximum

principle [6]. Then in Section 4, we introduce the discrete time sub-Riemannian op-

timal control problem corresponding to the continuous optimal controls introduced

in Section 2. We also obtain discrete extremal trajectories for this problem in this

section, using two alternate methods: that of direct discretization using variational

principles, and that of applying Pontryagin’s maximum principle. Because of the

Hamiltonian structure of the underlying system, there are certain scalar quantities

that are shown to be conserved in both the continuous time and discrete time ex-

tremals. These discrete extremals are used to obtain an iterative numerical algorithm

to numerically simulate the (continuous) extremal trajectories in Section 5. Section

6 presents a set of numerical simulation results obtained using this numerical scheme

for the extremal trajectory and optimal control inputs. Finally, we summarize the

developments made in this paper in the concluding Section 7 and discuss possible

future developments.
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2. The Continuous Optimal Control Problem. Consider the control system

defined by

(2)
d

dt
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,

in which ui : R → R is differentiable for i = 1, 2, 3. The system (2) can be regarded

equivalently as defining a family of differentiable curves in the matrix group SO(4).

Any such curve Q : R → SO(4) satisfies the kinematic equation

Q̇ =
[
u1(t)X

1 + u2(t)X
2 + u3(t)X

3
]
Q(t)

= U(t)Q(t)(3)

where X1, X2, X3 are elements of the basis {X1, . . . , X6} for so(4) = TISO(4) defined

by

X1 =












0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0












, X2 =












0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0












,

X3 =












0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0












, X4 =












0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0












,

X5 =












0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0












, X6 =












0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0












,(4)

and

(5) U(t) = u1(t)X
1 + u2(t)X

2 + u3(t)X
3.

In Section 3, we obtain necessary conditions for a differentiable path Q(t) satis-

fying (3) and the boundary conditions

Q(0) = Q0, Q(T ) = I,
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to be a normal extremal trajectory (defined below) with respect to the functional

(6) E(Q) =

∫ T

0

L(Q(t), U(t)) dt,

where

(7) L(Q, U) =
1

2

[
(u1)

2 + (u2)
2 + (u3)

2
]
.

We will refer to this functional as the action functional, following Roger Brockett’s

usage [7]. Extremals of this functional are called sub-Riemannian geodesics [5], since

they are optimal with respect to a smooth inner product restricted to the 3-plane field

spanned by right translations of {X1, X2, X3}. We also obtain evolution equations

for a discrete version of this problem in Section 4, which are then used to obtain

a numerical integration algorithm in Section 5 to numerically simulate the normal

extremal trajectories in Section 6.

3. Normal extremals for the Continuous Optimal Control Problem.

We use the notation 〈A, B〉 to denote the inner product of two matrices A, B ∈ R
n×n

defined by

(8) 〈A, B〉 =
1

2
tr(AT B).

The basis {X1, . . .X6} is orthonormal with respect to this inner product.

Let U be defined as above, and let V denote a vector of the form V = v1X
4 +

v2X
5 + v3X

6 ∈ so(4), so that 〈U, V 〉 = 0. Note that for any such V we may rewrite

the action Lagrangian as

(9) L(Q, U, V ) =
1

2
〈U, U〉 + 〈U, V 〉.

It turns out that this formulation determines a choice of V for each U along extremals

of the action functional (Proposition 1).

According to the maximum principle of optimal control theory, there exists a

matrix function P , called the costate associated with the state function Q, so that

the extremals of (6) minimize the Hamiltonian

H(P, Q, U, V ) = 〈P, Q̇〉 − p0L(Q, U, V )(10)

= 〈P, UQ〉 − p0

(
1

2
〈U, U〉 + 〈U, V 〉

)

where p0 ∈ {0, 1}. Solutions to the optimal control problem with p0 = 1 are called

normal extremals, and solutions with p0 = 0 are abnormal extremals. In this paper,

we obtain necessary conditions for a curve in SO(4) to be a normal extremal.

Proposition 1. Any extremal Q of (6) with costate P satisfies Hamilton’s

equations:

(11) Q̇ = UQ, Ṗ = −U⊤P.
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Proof. The first equation is merely (3). The second equation follows from

Ṗ = −gradQH = −gradQ〈P, UQ〉

= −gradQ〈U⊤P, Q〉 = −U⊤P.(12)

By the general theory of the maximum principle, the term 〈P, UQ〉 in the Hamil-

tonian H represents the pairing of a right-invariant 1-form with the right-invariant

vector field UQ. Indeed,

〈P, UQ〉 =
1

2
tr(P⊤ UQ) =

1

2
tr(QP⊤ U)

=
1

4
tr

(
(QP⊤ − PQ⊤)U

)

=
1

4
tr

(
(PQ⊤ − QP⊤)⊤ U)

= 〈
1

2
(PQ⊤ − QP⊤), U〉.(13)

Therefore, 〈P, UQ〉 is equivalent to the pairing of the linear functional 〈1
2 (PQ⊤ −

QP⊤), ·〉 ∈ so(4)∗ with U ∈ so(4).

Define λi = 〈P, X iQ〉 = 〈M, X i〉, for i = 1, . . . 6. Then by (13), we have

(14)
1

2

(
PQ⊤ − QP⊤

)
=

6∑

i=1

λiX
i.

Proposition 2. Along any extremal curve Q : [0, T ] → SO(4),

(15)
d

dt
M = [U, M ] , M ,

1

2

(
PQ⊤ − QP⊤

)
,

where the bracket denotes the matrix commutator.

Proof. If Q : [0, T ] → SO(4) is an extremal, then

d

dt
(PQ⊤) = ṖQ⊤ + P ˙(Q⊤)

= −U⊤PQ⊤ + PQ⊤U⊤ (by (11))

= U(PQ⊤) − (PQ⊤)U

=
[
U, PQ⊤

]
,

as given by (15). Similarly, one can show that

d

dt
(QP⊤) =

[
U, QP⊤

]
.

Therefore the result holds.

For any normal extremal of the action functional, M determines U ∈ span{X1,

X2, X3} ⊂ so(4) and an associated element V ∈ so(4) in the orthogonal complement

of span{X1, X2, X3} in the following way.
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Theorem 1. Any normal extremal Q : [0, T ] → SO(4) necessarily satisfies U +

V = M , so that

u1 = λ1, u2 = λ2, u3 = λ3,

v1 = λ4, v2 = λ5, v3 = λ6.
(16)

Moreover, the component functions ui and vi satisfy

u̇1 = u2v1, v̇1 = u3v2,

u̇2 = u3v3 − u1v1, v̇2 = −u3v1 + u1v3,(17)

u̇3 = −u2v3, v̇3 = −u1v2.

The system of ordinary differential equations (17) is the Euler system associated with

the extremal trajectory.

Proof. By the maximum principle, a necessary condition for Q : [0, T ] → SO(4)

to be an extremal is that gradUH = M − (U + V ) = 0, so that U + V = M .

Since {X1, . . . , X6} is an orthonormal basis for so(4), this establishes equations (16).

Equations (17) then follow from Proposition 2 and equations (16).

As a corollary, we recover the symmetric equation obtained by Bloch, Crouch and

Ratiu in [8] for normal extremals of a generalization of this sub-Riemannian optimal

control problem to a semisimple Lie group.

Corollary 1. For any normal extremal,

(18) U̇ − [U, V ] + V̇ = 0.

Proof. From Proposition 1 and Proposition 2, d
dt

(U + V ) = d
dt

(M) = [U, M ] =

[U, V ].

Note that equations (18) and (17) and equivalent. Systems of equations similar

to (18) were obtained in earlier work by Brockett in [7], and also the more recent work

in [9].

Although closed-form solutions of the Euler system (17) cannot be obtained, the

following conservation laws are easy to check.

Proposition 3. The quantities

〈U, U〉 = (u1)
2 + (u2)

2 + (u3)
2 = C1,(19)

〈V, V 〉 = (v1)
2 + (v2)

2 + (v3)
2 = C2,(20)

u1u3 − v1v3 + u2v2 = C3,(21)

are constant along any normal extremal.

Proof. By equations (17), the derivative of each expression on the left is 0.

In the following sections, we derive a numerical algorithm to numerically solve for

the normal extremal trajectories of this system given boundary conditions.
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4. The Discrete Optimal Control Problem. For numerical computations of

extremal trajectories, we use direct discretization of the optimal control problem of

minimizing the action functional (6). This is an application of the discrete variational

principle [10, 11], which leads to a symplectic integration algorithm for numerical

computation of the extremal trajectories.

Consider a discrete counterpart to the kinematic equation (3):

Qk+1 = exp (hUk)Qk

with Q0 = QI , QN = I(22)

where Qk ∈ SO(4), Uk ∈ span{X1, X2, X3} for each k = 0, 1, 2, . . . , N , for some

positive integer N , QI ∈ SO(4) is the given initial state and h is a time stepsize

for the discretization given by h = T/N where Q(t), t ∈ [0, T ] is the corresponding

continuous time trajectory. We introduce the action sum

(23) Ed = h
N∑

k=0

(
1

2
〈Uk, Uk〉 + 〈Uk, Vk〉

)

where Vk ∈ span{X4, X5, X6} for each k = 0, 1, 2, . . . , N . The discrete optimal control

problem corresponds to minimizing this cost function subject to (22).

4.1. Discrete Variational Approach. We examine necessary conditions from

the variational viewpoint. An admissible variation of Qk has the form

(24) δQk = YkQk

where Yk ∈ span{X1, X2, X3} and Y0 = YN = 0.

By equation (22), exp (Uk) = Qk+1 QT
k , from which we find that

hδUk exp (hUk) = δ(exp (hUk))

= δQk+1Q
T
k + Qk+1(δQk)T

= Yk+1Qk+1Q
T
k + Qk+1Q

T
k Y T

k

= Yk+1 exp (hUk) − exp (hUk)Yk,(25)

so that admissible variations of the Uk have the form

(26) hδUk = Yk+1 − Adexp (hUk)Yk.

As in the continuous case, there is a Vk ∈ span{X4, X5, X6} associated with each Uk,

k = 0, . . . , N . Admissible variations of Vk take the form δVk = Zk where 〈Yk, Zk〉 = 0.

Theorem 2. Normal extremals corresponding to the discrete variational problem

of minimizing (23) satisfy

Qk+1 = exp (hUk)Qk

Uk+1 − Uk + Adexp (−hUk+1)Vk+1 − Vk = 0,(27)
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for k = 0, 1, 2, . . . , N − 1.

Proof. The first of equations (27) is simply the discrete kinematics equation. The

first variation of Ed is given by

δEd = h

N∑

k=0

(〈Uk, δUk〉 + 〈Vk, δUk〉 + 〈Uk, δVk〉)

=

N∑

k=0

(
〈Uk + Vk, Yk+1 − Adexp (hUk)Yk〉 + 〈Uk, Zk〉

)
,(28)

using equation (26) and δVk = Zk. The necessary conditions for extremality are then

given by

(29) δEd =

N∑

k=1

〈Uk−1 + Vk−1 − Adexp (−hUk)(Uk + Vk), Yk〉 = 0,

and 〈Uk, Zk〉 = 0. Equation (29) is equivalent to the necessary condition in the second

of equations (27) for extremal trajectories.

These discrete extremal trajectories can be used to numerically simulate the con-

tinuous extremal trajectories with given initial and final points Q0 and QN on SO(4).

In fact, we can show that the first order (in h) approximations of the continuous (18)

and discrete (27) extremals are identical. For the discrete extremals (27), we obtain

the first order approximation as follows:

Uk − Uk−1 +
(
Vk − h[Uk, Vk]

)
− Vk−1 ≈ 0

⇒
Uk − Uk−1

h
− [Uk, Vk] +

Vk − Vk−1

h
≈ 0.(30)

A first order approximation of the continuous extremals (18) will be identical to (30),

since the “velocities” to first order are approximated as

U̇(tk) =
Uk − Uk−1

h
, V̇ (tk) =

Vk − Vk−1

h
.

Therefore the discrete extremals are equivalent to the continuous extremals at least

up to the first order, and hence can be used to approximate the continuous extremals

in a numerical simulation. The first-order approximation in (30) can be used to obtain

discrete relations that are counterparts of equations (17) in the continuous case.

4.2. Applying Pontryagin’s Maximum Principle. We can also obtain the

extremals for the discrete optimal control problem of minimizing (23) using the max-

imum principle. Appending the kinematic and control constraints in (22) to the cost

function (23), we can form the discrete Hamiltonian for this problem as below:

H(Pk+1, Qk, Uk, Vk) = Hk = 〈Pk+1, exp (hUk)Qk〉 −
1

2
〈Uk, Uk〉 − 〈Vk, Uk〉.(31)
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This discrete Hamiltonian can also be expressed as:

H(Pk+1, Qk, Uk, Vk) = 〈exp (−hUk)Pk+1, Qk〉 −
1

2
〈Uk, Uk〉 − 〈Vk, Uk〉.(32)

The discrete extremals can now be obtained by applying the maximum principle

to the discrete Hamiltonian, as given in the following result.

Theorem 3. Extremals (Qk, Pk) of the discrete optimal control problem of min-

imizing (23) subject to (22) satisfy

Qk+1 = exp (hUk)Qk,

Pk+1 = exp (hUk)Pk, and

Uk + Adexp (−hUk)Vk = hMk, Mk =
1

2

(
PkQ⊤

k − QkP⊤
k

)
,(33)

for k = 0, 1, . . . , N − 1.

Proof. The necessary conditions for extremality are obtained from the discrete

Hamiltonian (32) as:

Qk+1 = gradPk+1
Hk = exp (hUk)Qk,

Pk = gradQk
Hk = exp (−hUk)Pk+1

⇒ Pk+1 = exp (hUk)Pk,

which give the first two of equations (33). Now applying the maximum principle to

the discrete Hamiltonian, we get

gradUk
Hk =

h

2

(

Pk+1Q
⊤
k exp (−hUk) − exp (hUk)QkP⊤

k+1

)

− Uk − Vk = 0.(34)

Substituting Pk+1 = exp (hUk)Pk into (34), we obtain

(35)
h

2
Adexp (hUk)

(
PkQ⊤

k − QkP⊤
k

)
= Uk + Vk,

which can be rewritten as the third of equations (33).

From the first two of equations (33), we note that the discrete trajectory expressed

as (Qk, Pk) can be restricted naturally to the product space SO(4)×SO(4), as was the

case for their continuous counterparts in (11). However, such a restriction may include

only some of the discrete extremals while other extremals are excluded. Further, Qk

and Pk evolve along the same discrete vector field Uk, k = 0, 1, . . . , N . To relate these

equations to equation (27) in the variables Uk and Vk, we rewrite equation (34) as:

(36) hMk+1 = Uk + Vk,

by substituting the first of equations (33) into equation (34). Therefore, we have

(37) hMk = Uk−1 + Vk−1.
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Substituting the above back into the third of equations (33), we get

Uk + Adexp (−hUk)Vk = Uk−1 + Vk−1,

which is identical to equation (27). The expression (36) also implies that

Mk ∈ so(4)∗,

or MkQk ∈ T∗
Qk

SO(4). Using equations (33), we can show the following result, as the

discrete counterpart to Proposition 3.

Proposition 4. The following quantities

D1 = 〈Uk, Uk〉, D2 = 〈Vk, Vk〉, and

D3 = uk1
uk3

− vk1
vk3

+ uk2
vk2

(38)

are constant along the extremals (Qk, Uk, Vk) of the discrete optimal control problem

of minimizing (23) subject to (22).

Proof. Using equations (35) and (37), we obtain:

〈Uk + Vk, Uk + Vk〉 = h2〈Adexp(hUk)Mk, Adexp(hUk)Mk〉

= h2〈Mk, Mk〉

= 〈Uk−1 + Vk−1, Uk−1 + Vk−1〉.

Since the Uk and Vk are orthogonal in the trace inner product, the above equation

gives

〈Uk, Uk〉 + 〈Vk, Vk〉 = 〈Uk−1, Uk−1〉 + 〈Vk−1, Vk−1〉,

which leads to the conserved quantities D1 and D2 in (38), as Uk and Vk are in trace-

orthogonal complements in so(4). Similarly, it can be verified using equation (27)

that the quantity D3 is conserved along the discrete extremals.

Note that the quantities D1, D2 and D3 are the discrete counterparts of the

continuous functions C1, C2 and C3 given by Proposition 3.

These discrete extremal trajectories can be used as part of a numerical algorithm

for numerically obtaining the continuous extremal trajectories. This involves solving

a discrete two-point boundary value problem. Generally, a numerical algorithm to

solve this problem would consist of applying a shooting method so that the initial

and final configurations of the computed extremal trajectory are “close to” (up to

an error tolerance bound of) the given initial and final configurations (Q0 = QI and

QN = I).

5. Derivation of Numerical Algorithm. In this section, we outline a numer-

ical algorithm for simulating the extremals of the original continuous-time optimal

control problem with the cost function (6). This is done by using the corresponding
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discrete extremal trajectories given by equations (22) and (27) as a numerical inte-

gration scheme. To match the given terminal configurations, we obtain the sensitivity

derivative of these configurations to changes in the terminal conditions in the control

variables (U and V ). These sensitivity derivatives are then used to modify the ter-

minal values of the control variables and numerically integrate them using (27) in an

iterative process to match the given terminal configurations.

5.1. Two Point Boundary Value Problem. The two point boundary value

problem associated with finding the discrete extremal trajectory is given by the fol-

lowing equations:

Qk = exp (−hUk)Qk+1, Q0 = QI , QN = I,(39)

Uk−1 + Vk−1 = Uk + Adexp (−hUk)Vk.(40)

Note that these expressions above give an explicit map

(Qk+1, Uk, Vk) 7→ (Qk, Uk−1, Vk−1)

that can be used for backward time integration. In contrast, the forward time inte-

gration map given by equations (22) and (27) is implicit.

Since equations (39) and (40) are explicit, they are fast and easy to implement as

a backward time numerical integration scheme. Given Qk+1 and Uk, one can obtain

Qk from equation (39). Given Uk and Vk, the component of the right hand side

of equation (40) in span{X1, X2, X3} is equated to Uk−1 while the component in

span{X4, X5, X6} is equated to Vk−1. To use this as an integration scheme, we begin

from the given final configuration QN = I and choose UN−1 and VN−1; this means

we have to choose 6 scalar parameters as UN−1 + VN−1 ∈ so(4). Then this set of

equations is integrated backwards in time till we reach (Q1, U0, V0). Finally, we check

to see that Q0 = exp (−hU0)Q1 is close to (within the error tolerance bound of) the

given initial configuration QI .

An alternate method would be to solve this set of equations as a nonlinear root-

finding problem with the Ui and Vi (i = 0, 1, . . . , N − 1) as variables. However,

this method would involve solving for a large number (= 6(N − 1)) of variables,

which would require a large number of iterations by Newton’s method and result in

a slow and cumbersome algorithm. The shooting method employed here consists of

changing the control parameters UN−1 and VN−1 in an iterative procedure until the

initial condition is satisfied up to a preset error tolerance bound. This involves solving

the 6 dimensional two-point boundary value problem given by (39) and (40).

The main drawback of a shooting method is that the extremal solutions are very

sensitive to changes in the initial values of the parameters to be chosen. The non-

linearity of the equations (39) and (40) makes it difficult to construct an accurate

estimate of the sensitivity. In addition, the effect of the control variables Vk on the
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configuration Qk is indirect and acts via the control equation (40). This makes it

difficult to directly compute the sensitivity of the configuration to these variables. In

particular, for the shooting method to work, we require knowledge of the sensitiv-

ity derivatives of Q0 to UN−1 and VN−1. A computational scheme to obtain these

derivatives numerically is described in what follows next.

5.2. Discrete Linearized System. The idea is to find a linear transformation

between the initial and final states of the discrete system of equations (39) and (40).

We first obtain the linearized equations of motion for this discrete system. We rep-

resent the configuration Qk ∈ SO(4) in the linearized equations by the “exponential

coordinates” given by the inverse of the exp map:

Qk = exp (Sk) ⇔ Sk = exp−1 (Qk) = log (Qk) ∈ so(4).

Therefore, a perturbation of Sk results in a perturbation of Qk given by:

∆Qk = ∆Sk exp (Sk) = ∆SkQk.

Using this expression, and taking perturbations of Qk, Uk and Qk+1 in equation (39),

we obtain

∆SkQk =
(

− h∆Uk exp (−hUk) + exp (−hUk)∆Sk+1

)

Qk+1,

and using equation (39) again on this expression gives us

∆Sk = −h∆Uk + Adexp (−hUk)∆Sk+1.(41)

A first order (in time step h) expansion of equation (41) gives us the following linear

equation

∆Sk = ∆Sk+1 − h[Uk, ∆Sk+1] − h∆Uk,(42)

which is a linear first-order approximation of the discrete configuration equation (39).

The linearized first-order equation corresponding to (40) is obtained directly by lin-

earizing (30) as the following:

∆Uk−1 + ∆Vk−1 = ∆Uk − h
(

[∆Uk, Vk] + [Uk, ∆Vk]
)

+ ∆Vk.(43)

Note that the corresponding continuous versions of equations (42) and (43) will

be time-varying, since the transformation map between (∆Sk, ∆Uk−1, ∆Vk−1) and

(∆Sk+1, ∆Uk, ∆Vk) depends on (Uk, Vk). This transformation is given by the linear
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equation below:

[

I 0 0

0 I I

]





∆Sk

∆Uk−1

∆Vk−1




 =

[

I − h adUk
−hI 0

0 I + h adVk
I − h adUk

]





∆Sk+1

∆Uk

∆Vk




 ,(44)

where ad denotes the adjoint representation of so(4),

adAB = [A, B].

Since ∆Uk−1 and ∆Vk−1 are in orthogonal complements of so(4), equation (43) or

(44) uniquely determines them. One can use linear projection operators in the linear

mapping above to obtain the linear transformation of states

(45) Xk−1 = AkXk, Xk =






∆Sk+1

∆Uk

∆Vk




 ,

where Ak is obtained from equation (44). Since ∆Sk ∈ so(4), ∆Uk ∈ span{X1, X2,

X3} ⊂ so(4) and ∆Vk ∈ span{X4, X5, X5} ⊂ so(4), they can also be expressed as

corresponding vectors ∆sk ∈ R
6, ∆uk ∈ R

3, and ∆vk ∈ R
3, as so(4) is isomorphic to

R
6. In this vector representation, the state transformation equation is

(46) xk−1 = Akxk, xk =






∆sk+1

∆uk

∆vk




 ∈ R

12.

5.3. Numerical Algorithm. From the linearized state equation (46), we obtain

the linear map from the final state to the initial state, as follows:

(47) x0 = ΦxN−1, Φ = A1A2 · · · AN−1.

The matrix Φ is the sensitivity matrix or sensitivity derivative of the initial conditions

with respect to the final conditions. Note that since we begin backwards integration

from the final configuration QN = I which is known, ∆sN = 0. Also, the error in the

initial configuration ∆s0 can be obtained from ∆s1 and ∆u0 using equation (42), and

is given by

∆s0 = Ly0, where y0 ,

[

∆s1

∆u0

]

∈ R
9,

L =






I − h adu0
︸ ︷︷ ︸

6×6

[

−hI

0

]

︸ ︷︷ ︸

6×3




 .

(48)
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The relation between y0 and zN−1 , [∆u⊤
N−1 ∆v⊤N−1] ∈ R

6 is given by

(49) y0 = ΨzN−1,

where Ψ ∈ R
9×6 is the top-right 9×6 block of Φ. Thus the sensitivity of ∆s0 to zN−1

at any iteration step is given by the following map:

(50) ∆s0 = SzN−1, S , LΨ.

Equation (50) also defines the sensitivity matrix S. Since the initial configuration

Q0 = QI is known, the criterion for convergence to the optimal solution is ∆s0 → 0.

Using the sensitivity matrix, an initial guess of the change in the unspecified final

control is iterated to satisfy the specified initial configuration. Any iterative scheme of

Newton type may be applied. We use a Newton-Armijo iterative scheme [12], which is

a line search using the Newton search direction, together with backtracking to ensure

sufficient descent of the residual error in initial configuration. A similar scheme has

been recently applied to a rigid body attitude control problem in [13]. This numerical

algorithm is outlined in steps below.

1. Guess the final controls UN−1 and VN−1.

2. Find Qk, Uk−1 and Vk−1 using (39)-(40).

3. Compute the initial condition error; error= ‖∆s0‖.

4. Set errort =error, i = 1.

5. while error> ǫ

6. Find a line search direction; Ds = S−1.

7. Set c = 1.

8. while errort > (1 − 2αc)error

9. Choose a trial control zt
N−1 = zN−1 + cDs∆s0.

10. Find Qk, Uk−1 and Vk−1 using (39)-(40).

11. Compute the initial condition error; errort = ‖∆st
0‖.

12. Set c = c/10, i = i + 1.

13. end while

14. Set zN−1 = zt
N−1, error=errort. (accept the trial)

15. end while

Here i is the iteration number, and ǫ, α ∈ R are a stopping criterion and a scaling fac-

tor, respectively. The trial control vector is expressed as ZN−1 = [u⊤
N−1 v⊤N−1]

⊤ ∈ R
6.

While the outer loop finds a search direction by computing the sensitivity derivatives,

the inner loop performs a line search to find the largest step size c ∈ R along the

search direction. The error in satisfying the initial boundary condition is determined

in each inner iteration.

6. Numerical Simulation Results. Results from a numerical simulation car-

ried out using the numerical algorithm given in Section 5 are provided here. The
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Fig. 1. Matrix logarithm of optimal state Q with time

quantities required to carry out this simulation are the given initial configuration

QI =









0.9541 −0.2965 −0.0422 −0.0039

0.2995 0.9437 0.1401 −0.0036

0.0017 −0.1122 0.7681 0.6304

0.0048 0.0939 −0.6234 0.7763









,

the known final configuration QN = I, a simulated time interval of T = 1 second and

a time stepsize of h = 0.01 second. We obtain the following results for this simulation.

Figure 1 plots the matrix logarithm of Q ∈ SO(4) against time obtained using

our numerical scheme; with S = log(Q) ∈ so(4) defined so that exp(S) = Q. For the

given initial configuration QI , we have = log(QI) as below:

SI =









0 −0.3037 −0.0223 0.0004

0.3037 0 0.1392 −0.0530

0.0223 −0.1392 0 0.6806

−0.0004 0.0530 −0.6806 0









,

with ‖SI‖ = 0.7. On backwards time integration, our numerical scheme converges to

an extremal trajectory with

Q0 =









0.9540 −0.2969 −0.0423 −0.0039

0.2998 0.9436 0.1402 −0.0035

0.0017 −0.1123 0.7676 0.6310

0.0048 0.0941 −0.6240 0.7758









,
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Fig. 3. Components of V with time

with ‖S0‖ = 0.7008. The tolerance level for the initial configuration error was set to

ǫ = ‖∆S0‖ = 0.001. Figures 2 and 3 plot the control components U and the “non-

control” directions V respectively with time. As shown in these figures, our numerical

integration scheme ensures that the initial configuration error in Q0 ∈ SO(4) is within

the required error tolerance level of the given initial configuration QI . The scheme

converges in 105 iterations with initial guesses of the final control efforts U0
N and V 0

N
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Fig. 4. Components of conserved quantities D1, D2, D3 with time

(Z0
N = U0

N + V 0
N ) given by :

Z0
N =









0 0.3255 −0.6292 0.3973

−0.3255 0 1.3585 −0.6699

0.6292 −1.3585 0 −0.1468

−0.3973 0.6699 0.1468 0









.

The final control efforts UN and VN (or ZN = UN + VN ) obtained for the converged

solution are as given below:

ZN =









0 0.3020 0.0846 −0.6065

−0.3020 0 −0.5564 1.3991

−0.0846 0.5564 0 −0.4922

0.6065 −1.3991 0.4922 0









.

Figure 4 shows that the conserved scalar quantities D1 = 〈Uk, Uk〉, D2 = 〈Vk, Vk〉

and D3 = uk1
uk3

− vk1
vk3

+ uk2
vk2

given by Proposition 4, which correspond to

the conserved quantities C1, C2 and C3 given by Proposition 3 along the normal

extremals, are indeed conserved numerically as well.

7. Conclusions. This paper presents a novel numerical approach to solving a

sub-Riemannian optimal control problem that arises in certain quantum spin sys-

tems. The continuous optimal control is first formulated, and an extremal solution

is obtained. Then this continuous optimal control problem is discretized to obtain a

numerical scheme that is symplectic in nature, and conserves certain first integrals of

the system due to its origin in discrete variational principles. Numerical solutions of
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the extremal trajectories using this numerical algorithm have been obtained, and show

the efficiency of this numerical scheme and the numerically robust properties arising

from its underlying discrete variational structure. Such numerical schemes may be

applied to numerically simulate the implementation of specific logic gates using linear

chains of spin systems.
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