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CONTROL COMMUNICATION COMPLEXITY OF NONLINEAR

SYSTEMS∗

WING SHING WONG† AND JOHN BAILLIEUL‡

Abstract. The interaction of information and control has been a topic of interest to system

theorists that can be traced back at least to the 1950’s when the fields of communications, control,

and information theory were new but developing rapidly. Recent advances in our understanding of

this interplay have emerged from work on the dynamical effect of state quantization together with

results connecting communication channel data rates and system stability. Although this work has

generated considerable interest, it has been centrally concerned with the relationship between control

system performance and feedback information processing rates while ignoring the complexity (i.e. the

cost of information processing). The concepts of communication and computation complexity of a

controlled dynamical system based on digitized information lie in what is largely an uncharted area.

In our recent work an attempt was made to explore this area by introducing a new measure of

communication complexity for a two-player distributed control system. This complexity is named

control communication complexity (CCC). It is based on the communication complexity concept

defined in distributed computing and seeks to connect the complexity of information exchange over

finite bandwidth channels with the control system dynamics. The purpose of the present paper is

to extend the study of control communication complexity to an interesting class of continuous-time

control systems that have appeared in the recent literature dealing with quantum communication

and control systems. An interesting aspect of this extension is that it brings together heretofore

independent research themes that have been prominent in the research career of Roger Brockett.

1. Introduction. In his seminal paper, [Yao1] defined the concept of communi-

cation complexity with the aim of understanding certain cost aspects of information

exchange between processors that cooperate to perform computations. For an intro-

duction to this theory one can refer to the monograph Communication Complexity by

Kushilevitz and Nisan ([KuNi]). In recent work [Wong], one of the authors investi-

gated similar ideas in the context of digital finite communication bandwidth control,

where one studies control system dynamics wherein multiple agents collaboratively

provide inputs to a control system in order to achieve a common objective that no

single agent could achieve alone. The information that is exchanged by agents that

cooperatively steer a control system to a given objective determines what we shall

call the control communication complexity of the problem.

The purpose of the present paper is to explore this circle of ideas in the context

of some well-known work of Roger Brockett—especially work he has done over sev-
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eral decades on geometric optimal control. Over the course of his career, Brockett

made seminal contributions to modern control theory, the most important of which

was probably his founding the field of geometric nonlinear control. It is striking that

while he has remained a leader in the field, he has also introduced important new per-

spectives in other parts of the discipline—one notable example being in what might be

called information-based control. This paper poses a problem that is directly related

to both nonlinear optimal control and the information-exchange in the distributed

control of nonlinear systems. In general terms, we consider control systems of the

form

(1.1)

{

ẋ = f(x, u),

y = h(x).

evolving on some state manifold M of dimension n and in which the dimension m

of the input u = (u1, . . . , um) is greater than one. The present paper focuses to

a large extent on a distributed version of the problem in which entries ui(·)’s in

the control vector are determined by independent agents who collaborate to achieve

specified control objectives. (One could also consider a related problem in which

adversarial agents “anti-collaborate” in an effort to foil each other from achieving

control objectives. This problem will not be considered here.) The objectives, finite

in number, are expressed as terminal states h(x1(T )), . . . , h(xN (T )), and we assume

that N can be expressed as the product of m positive integers k1k2 · · · km. The

optimal control problem we wish to consider seeks to find N choices of control inputs

(u1,i1 , . . . , um,im) where 1 ≤ ij ≤ kj , j = 1, . . . ,m, with each m-tuple ξ = (i1, . . . , im)

identifing a unique control objective h(xξ(T )) from our list. The controls are designed

so that each m-tuple (u1,i1 , . . . , um,im) steers (1.1) from a common initial state x0 to

the goal state xξ(T ) in such a way that

η =

∫ T

0

k1
∑

j=1

u1,j(t)
2 + · · · +

km
∑

j=1

um,j(t)
2 dt

is minimized. Note that in general the sum of the number of possible control choices

over the components of the inputs, k1+ · · ·+km is less than the number N = k1 · · · km
of goal states. It is also the case that the problem remains interesting if not all goal

states are distinct from one another—in which case some combinations of the control

inputs will lead to the same terminal state. At this level of generality, the problem

has some of the flavor of Brockett’s very recent work on design and optimization

techniques for families of control system trajectories. We refer, for instance, to [RWB4]

and [RWB5]. It is in the first of these references that the term “standard parts” is

used in describing an approach to control system design. We shall also adopt this

terminology and refer to the above as the standard parts optimization problem.

The present paper is concerned with a restricted version of the problem in which

m = 2. We consider the relaxed objective of choosing a set of control inputs that
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will drive an output function h(·) to a set of goal values hij prescribed by an n1 × n2

matrix H. We are thus concerned with the problem of finding a choice of n1 scalar

inputs ui and n2 inputs vj such that together ui and vj steer

(1.2) ẋ(t) = a(x(t), u(t), v(t)), y(t) = h(x(t))

from x(0) = x0 ∈ M to x(T ) such that h(x(T )) = hij and such that the collective

cost

(1.3)

∫ T

0

n1
∑

i=1

ui(t)
2 +

n2
∑

j=1

vj(t)
2 dt

is minimized. The problem can be viewed in different ways. It can be seen as an

extension of the optimal control problems on manifolds that were of interest to Roger

Brockett several decades ago. (See specifically, the 1973 paper “Lie Theory and Con-

trol Systems Defined on Spheres,” [RWB0].) Our own goal in the research discussed

below is to understand how the performance index (1.3) measures the cost of per-

forming a computation and also the complexity of the communication taking place

between agents in executing a prescribed computation. While physicists have been

concerned for some time with the minimum energy needed to perform computations

(See e.g. [Feynman].), there has been very little written about how these problems

might be formulated in terms of optimal control. The goal of our study of control

communication complexity (CCC) is to understand the collaboration dynamics and

information exchange that enable a system with distributed inputs to meet given ob-

jectives while minimizing some collective measure of performance. For the case of 2×2

goal matrices H, we solve a parametric version of (1.2)-(1.3) in the case that (1.2) is

the so-called Heisenberg system and the control inputs are sinusoids parameterized

by phase and amplitude. Sections 4, 5, and 6 describe the main results. In a related

paper ([WongBa1]), we treat the case of n1×n2 goal matrices and control inputs that

are represented by Fourier series.

In Yao’s original paper [Yao1] and in much of the work that has followed, the

focus had been on the number of bits of information that must be exchanged between

collaborators (Alice and Bob) in order to efficiently compute the value of a Boolean

function f(x, y) assuming Alice initially knows only the value of x, and Bob initially

knows only the value of y. Efficiency is measured in terms of the number of bits

of information that Alice and Bob exchange regarding the values of their respective

variables x and y. In [Wong], the focus of the extension to control communication

complexity remains on collaborative tasks being completed through the sharing be-

tween agents of finite numbers of bits of information. In the present paper, we pose

problems of multiagent collaborative control of systems prescribed by nonlinear dif-

ferential equations. A question that comes immediately to mind is how to model

information exchange among agents in this setting. As we shall show in the remain-

der of the paper, there is an interesting class of nonlinear control systems that have
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been extensively studied and written about by Brockett, for which the system objec-

tives are achieved using simple closed curves as control inputs. In order to make this

precise, we shall focus most of the paper on two and three-dimensional specializations

of (1.1) in which there are two independent control inputs. In the next section, we

introduce a number of two-input nonlinear control systems. It is noted that these

can arise as models in both classical and quantum mechanics (spin systems). Section

3 introduces a general class of distributed control systems and defines the concept

of control communication complexity. In Section 4, the distributed control control

is specialized to a particular two-input system that is introduced in Section 2. The

control complexity of this model is studied in Section 5. Section 6 relates the control

communication complexity problem to the standard parts optimization problem. For

the model treated in Sections 4 and 5, a parametric solution to the standard parts

optimization problem is given in terms of what we call phased-loop inputs. Section

7 addresses the challenges of control communication in the case that the loop inputs

are subject to phase uncertainty.

2. Some Optimal Control Problems on 2 and 3 Dimensional State Man-

ifolds. Consider a nonlinear system with two independent controls whose evolution

is described by the equation

(2.1) ẋ = u1f1(x) + u2f2(x); x(0) = x0

where x is a coordinate representation of a point on a three-dimensional manifold M ,

and for all x in an open neighborhood of x0 ∈M , the three-elements set {f1(x), f2(x),
[f1(x), f2(x)]} is a basis for the tangent space TxM . Here [f1(x), f2(x)] is the standard

Lie bracket of vectorfields:

(2.2) [f1, f2] =
∂f1
∂x

f2 −
∂f2
∂x

f1.

Specific examples of manifolds and systems of interest include the following.

Example 2.1. M = SU(2), the group of 2 by 2 unitary matrices. The set

of two by two matrices of the form

(

x+ iy −z + iw

z + iw x− iy

)

where x2 + y2 + w2 + z2 = 1 is the standard representation of the special unitary

group SU(2). It is a three dimensional manifold whose topology is the same as that

of the 3-sphere in R
4.

We note that the tangent spaces at all points X ∈ SU(2) are isomorphic to the

tangent space at the identity, which we denote as usual by su(2). Thus, vectorfields

on SU(2) may be represented in terms of elements in su(2). Letting A ∈ su(2), the

corresponding right-invariant vectorfield at X ∈M (= SU(2)) is AX . For details on
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the connection between the Lie algebra su(2) and the Lie algebra of vectorfields on

SU(2), we refer to standard texts, such as [Var]. One choice of basis for su(2) is

A1 =

(

0 i/2

i/2 0

)

, A2 =

(

0 −1/2

1/2 0

)

, A3 =

(

i/2 0

0 −i/2

)

,

in terms of which a control system of the form (2.1) is given by

(2.3) Ẋ = u1A1X + u2A2X, X(0) = I.

The Lie bracket operation(2.2) when specialized to M = SU(2) is then represented

by the matrix Lie bracket [A,B] = AB−BA. For the chosen basis, it is easy to verify

that

[A1, A2] = A3.

The chosen basis for su(2) may be expressed in terms of the so-called Pauli spin

matrices: σj = iAj (j = 1, 2, 3, and i =
√
−1). Any element in X ∈ SU(2) can be

written in the form

X = eiσ1θ1eiσ2θ2eiσ3θ3

where 0 ≤ θj < 2π for j = 1, 3, and 0 ≤ θ2 ≤ π. As noted in [Holevo] and elsewhere,

SU(2) plays an important role in modeling quantum bits (qubits), and in such ap-

plications, elements of the group are typically represented in terms of the Pauli spin

matrices.

Example 2.2. M = SO(3), the special orthogonal group of rotations

of the 2-sphere. Again the tangent space at any point in this group manifold is

isomorphic as a Lie algebra to the tangent space at the identity, which we label in

the usual way as so(3). The algebraic structure of so(3) is easily discovered. Let

A ∈ so(3) and let R(t) ∈ SO(3) be a curve such that R(0) = I and Ṙ(0) = A. By

differentiating both sides of the equation R(t)R(t)T ≡ I and evaluating these at 0,

it is easily seen that A must be skew-symmetric—verifying the well-known fact that

so(3) is the matrix Lie algebra of 3× 3 skew-symmetric matrices. It will follow easily

from the next proposition that every 3 × 3 skew-symmetric matrix is the tangent at

the identity to some curve in SO(3), and hence so(3) contains the set

















0 −γ β

γ 0 −α
−β α 0






: α, β, γ ∈ R











.

The following shows the relationship between the above set and elements of SO(3)

via the well-known Rodrigues’ formula.
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Proposition 2.1. (Rodrigues’ formula) [RWB1] Let

Ω =







0 −γ β

γ 0 −α
−β α 0







be an arbitrary skew-symmetric matrix. Then we have the following closed-form ex-

pression for the matrix exponential

(2.4) eΩ = I + Ω′ sinλ+ Ω′ 2(1 − cosλ)

where λ =
√

α2 + β2 + γ2 and Ω′ = Ω/λ.

The geometry of SO(3). There is an elegant way to visualize SO(3) based on

Rodrigues’ formula (2.4) and the observation that the exponential mapping is onto

from so(3) to SO(3). The later result is known in various forms (see for example

[TaKr].) To facilitate subsequent discussions, we present the following version with a

proof.

Proposition 2.2. Let e : so(3) → SO(3) be given by the formula (2.4). For all

X ∈ SO(3),

1. −1 ≤ tr(X) ≤ 3;

2. if −1 < tr(X) < 3, there is a unique angle θ, 0 < θ < π, and a unique skew

symmetric matrix

Ω =







0 −γ β

γ 0 −α
−β α 0







with α2 + β2 + γ2 = 1 such that

(2.5) eΩθ = X, and

3. if tr(X) = 3, then X = I (the 3 × 3 identity matrix). If tr(X) = −1, then

we may solve (2.5) for θ = π. The unit vector (α, β, γ) is also determined by

(2.5), but only up to multiplication by ±1.

Proof. (1) Define the two “Euler” matrices

Rz(α) =







cosα − sinα 0

sinα cosα 0

0 0 1






Ry(α) =







cosα 0 sinα

0 1 0

− sinα 0 cosα






.

It is well-known that any element X ∈ SO(3) can be written as the product X =

Rz(φ)Ry(ξ)Rz(ψ) where 0 ≤ φ, ψ < 2π and 0 ≤ ξ ≤ π. Using this representation of

X , we have x11 + x22 + x33 = cos ξ+ cos ξ cos(φ+ψ) + cos(φ+ψ). Now if tr(X) < 0,
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at least one of cos ξ and cos(φ + ψ) must also be less than 0. Assume, without loss

of generality, that cos ξ < 0. Writing tr(X) = a + (1 + a)b where a = cos ξ and

b = cos(φ + ψ), we see immediately that because 1 + a ≥ 0 this is always larger

than or equal to −1. The inequality tr(X) ≤ 3 is an immediate consequence of this

Euler-angle representation. This proves (1)

To prove (2), note that from Proposition 1.1, it follows that the expansion of the

left hand side of (2.5) yields

eΩθ = I + sin θΩ + (1 − cos θ)Ω2.

To solve the matrix equation (2.5), we sum the diagonal entries on both sides

x11 + x22 + x33 = 1 + 2 cos θ.

The cosine function defines a one-to-one mapping of the interval [0, π] onto [−1, 1],

and hence there is a unique value of θ ∈ [0, π] given by

θ = arccos[
x11 + x22 + x33 − 1

2
].

Note that if θ = 0, π, the problem of finding α, β, and γ is indeterminate. For

θ ∈ (0, π), however, we may solve explicitly

α =
x32 − x23

2 sin θ
, β =

x13 − x31

2 sin θ
, γ =

x21 − x12

2 sin θ
.

To prove (3), note that if θ = 0, X must be the identity matrix. If, on the other

hand, θ = π, X must be a symmetric matrix, and the equations

2αβ = x12 = x21 2αγ = x13 = x31 2βγ = x23 = x32

can be solved for the entries in a unit vector (α, β, γ) which is unique only up to

multiplication by ±1. This explicit solution proves the proposition.

The geometric content of the proposition is that every element in SO(3) can be

visualized as a rotation by some angle θ about a unit vector (α, β, γ). These quantities

can be viewed as points in a solid ball of radius π in R
3. In this representation, an

element corresponding to the parameters (α, β, γ), and θ will be associated to the

point in the radius-π ball lying θ-units from the origin in the direction of the unit

vector (α, β, γ). Note, that in light of Proposition 1.2(3), the antipodal points on

the surface of the radius-π ball correspond to the same element of SO(3). Since

these points cannot be distinguished from one another, we identify them. Through

this construction, we see that SO(3) is diffeomorphic to the three dimensional real

projective plane RP 3.

The relationship of SO(3) to SU(2). There is a group homomorphism from SU(2)

and SO(3), and a Lie algebra isomorphism between su(2) and so(3) (see for example
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[CaMa].) This isomorphism is given explicitly by







0 −γ β

γ 0 −α
−β α 0






↔ 1

2

(

iγ −β + iα

β + iα −iγ

)

.

Choosing the canonical so(3) basis

B1 =







0 0 0

0 0 −1

0 1 0






, B2 =







0 0 1

0 0 0

−1 0 0






, B3 =







0 −1 0

1 0 0

0 0 0






,

this isomorphism is specified in terms of the bases by Bj ↔ Aj (j = 1, 2, 3). From

either the isomorphism or a direct calculation we find that

B3 = [B1, B2].

While there is a natural one-to-one correspondence between the Lie algebras of so(3)

and su(2), the relationship between the Lie groups SO(3) and SU(2) is less straight-

forward. Indeed, while SU(2) is diffeomorphic to the 3-sphere, we have seen above

that SO(3) is diffeomorphic to the 3-dimensional projective plane. Thus, while SU(2)

is simply connected, SO(3) is not. SU(2) is a double covering of SO(3), as may be il-

lustrated by the Rodrigues’ formula prescribing the (surjective) exponential mapping

su(2) → SU(2):

(2.6)

exp

[

1
2

(

iγ −β + iα

β + iα −iγ

)

θ

]

=

(

cos(θ/2) 0

0 cos(θ/2)

)

+

(

iγ −β + iα

β + iα −iγ

)

sin(θ/2).

As θ is varied from 0 to 2π in (2.5), a noncontractable loop beginning and ending

at the identity of SO(3) is traced. As θ is varied from 0 to 2π in (2.6), however, a

non-closed curve from I to −I is traced in SU(2). By continuing θ from 2π to 4π,

the corresponding curve in SU(2) returns to I, while the curve in SO(3) is traced a

second time. In terms of this double covering, a second construction of SO(3) can

be obtained by identifying all pairs of elements X and −X in SU(2). Since SU(2) is

diffeomorphic to the 3-sphere, S3 ⊂ R
4, this is an alternative way to view SO(3) as

real projective 3-space, RP 3.

In terms of these matrices, the two-input control system corresponding to (2.3)

is given by

(2.7) Ẋ = u1B1X + u2B2X, X(0) = I.

For this system, we pose the following optimal control problem: Find controls u1(·),
u2(·) that steer (2.7) from I to X ∈ SO(3) in T > 0 units of time such that the
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integral

(2.8) η =

∫ T

0

u1(t)
2 + u2(t)

2 dt

is minimized.

Theorem 2.1. (Baillieul, 1978) Given the preceding optimal control problem let

u0
1(t), u

0
2(t) be optimal control inputs to (2.7). There exists a differentiable function

ω(t) such that the following differential equation is satisfied

(2.9)







0 −ω̇ u̇2

ω̇ 0 −u̇1

−u̇2 u̇1 0






=













0 −ω u2

ω 0 −u1

−u2 u1 0






,







0 0 u2

0 0 −u1

−u2 u1 0













Proof. See [Bal1].

In general solving such optimal control problems can be difficult, but in this case

one finds upon expanding the right hand side of (2.9) that ω(t) ≡ ω (a constant).

Moreover, the differential equations for u1 and u2 then reduce to
(

u̇1

u̇2

)

=

(

0 −ω
ω 0

)(

u1

u2

)

,

so that the optimal control inputs take the form u0
1(t) = µ cos(ωt + φ), u0

2(t) =

µ sin(ωt+ φ) where

µ =
√

u1(0)2 + u2(0)2 and φ = arctan[
u2(0)

u1(0)
].

In light of this explicit determination of the optimal controls, the equation (2.7)

may be written as

(2.10) Ẋ(t) = eΩtΩ0e
−ΩtX(t), X(0) = I,

where

Ω =







0 −ω 0

ω 0 0

0 0 0






and Ω0 =







0 0 u2(0)

0 0 −u1(0)

−u2(0) u1(0) 0






.

Equation (2.10), in turn, may be explicitly solved for the optimal state evolution:

(2.11) X(t) = eΩte(−Ω+Ω0)t.

Because there is no control input directly associated with the generator B3 of

rotations about the z-axis, it is of particular interest to study optimal trajectories

from I to group elements of the form

(2.12) exp













0 −1 0

1 0 0

0 0 0






θ






=







cos θ − sin θ 0

sin θ cos θ 0

0 0 1






.
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To make the problem interesting, assume θ 6= 0(mod)2π. We use (2.4) to find values

of ω, u1(0), u2(0) such that the right hand sides of (2.11) and (2.12) are equal. We

wish to solve







cos θ − sin θ 0

sin θ cos θ 0

0 0 1






=







cosωT − sinωT 0

sinωT cosωT 0

0 0 1



















1 0 0

0 1 0

0 0 1






+







0 ω′ ω′
2

−ω′ 0 −ω′
1

−ω′
2 ω′

1 0






sinψ +







0 ω′ ω′
2

−ω′ 0 −ω′
1

−ω′
2 ω′

1 0







2

(1 − cosψ)









,

where

ω′ = ω/
√

ω2 + u1(0)2 + u2(0)2, ω′
i = ui(0)/

√

ω2 + u1(0)2 + u2(0)2,

and ψ =
√

ω2 + u1(0)2 + u2(0)2 · T.

Comparing matrix entries on both sides of this equation, we find that

ωω′
1(1 − cosψ) = ωω′

2(1 − cosψ) = 0.

If ω = 0, there could be no component of rotation about the z-axis. Hence we must

have ω 6= 0. Also, it cannot be the case that both ωi’s are zero. Hence, the above

equations imply that cosψ = 1, so that ψ = 2kπ for some integer k.

In summary form, what emerges about the optimal control problem problem is

the following:

(i)
√

ω2 + u1(0)2 + u2(0)2 · T = 2kπ for some integer k;

(ii) ωT = θ + 2jπ for some integer j;

(iii)
√

ω2 + u1(0)2 + u2(0)2 · T =
√

µ2 + ω2 · T ; and

(iv) the optimal cost is η = µ2T = (u1(0)2 + u2(0)2)T .

By means of an elementary but detailed argument, one can show that for an optimal

trajectory, k = 1, and j = ±1, with the sign of j being opposite that of θ. The results

of this analysis may be summarized as

Theorem 2.2. Let θ ∈ (−π, π). The control inputs u1(·), u2(·) that steer the

system (2.7) in T > 0 units of time from X(0) = I to X(T ) = Rz(θ) so as to

minimize η in (2.8) are of the form

u0
1(t) = µ cos(ωt+ ϕ), u0

2(t) = µ sin(ωt+ ϕ)

where µ and ϕ are determined by u1(0), u2(0),

ωT =







θ − 2π if θ ≥ 0

θ + 2π if θ < 0,
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and u0
1(0), u0

2(0) are chosen arbitrarily subject to the constraint that

u1(0)2 + u2(0)2 =
2π|θ| − θ2

T
.

The right hand quantity is also the value of η/T .

�

While this theorem gives a fairly complete picture of optimal trajectories from

X0 = I to X1 = Rz(θ), further remarks are in order about trajectories between arbi-

trary start and end points. We see that all optimal trajectories have the form (2.11),

and among the choices of parameter values ω, u1(0), u2(0) meeting the boundary con-

ditions, only those specified by Theorem 2.2 define optimizing trajectories between

X0 = I and X1 = Rz(θ). Note that for any choice of ω such that −2π < ω < 2π and

corresponding choices of u1(0), u2(0) such that
√

ω2 + u1(0)2 + u2(0)2T = 2π, any

trajectory of the form (2.11) that has initial condition X0 = I will coincide with a

z-axis rotation matrix Rz(θ) exactly once in the half-open interval 0 < t ≤ T . Hence

while Theorem 2.2 stipulates that to steer (2.7) optimally from I to Rz(θ) we require

ω ∈ [−2π, π] ∪ [π, 2π), choices of ω ∈ (−π, π) with
√

ω2 + u1(0)2 + u2(0)2T = 2π

lead to trajectories from I to some z-axis rotation Rz(θ) that are not optimal along

the entire time interval although they continue to satisfy the local optimality condi-

tion (2.9). Finding the optimal evolution of (2.11) between X0 = I and an arbitrary

endpoint X1 ∈ SO(3) requires consideration of all values of ω ∈ [−2π, 2π).

Example 2.3. Two-input control systems defined on M = S2. Closely

related to Example 2.2 is the following system in R
3 evolving according to

(2.13) ẋ = (u1B1 + u2B2)x, x(0) = x0.

It is easy to show that the standard 2-norm ‖x‖2 is preserved along all trajectories of

this system, and hence we can think of (2.13) as a control system defined on the unit

sphere S2. We note that the vector fields B1x and B2x span the tangent space TxS
2

at all points x ∈ S2 except those such that the component x3 = 0. Nevertheless, as

noted by Brockett ([RWB0]), the system is controllable in that given any two points

x, y ∈ S2 and any time T > 0 there is a pair of control inputs u1, u2 that steer (2.13)

from x to y in T units of time.

Although the state space S2 has dimension smaller by one than the state space

SO(3)., there is additional complexity in solving the problem of optimally steering

between given endpoints so as to minimize η in (2.8). We note that for the SO(3)

optimal control problem (2.7)-(2.8), the set {Rz(θ) : −π < θ ≤ π} ⊆ SO(3) is a

state space locus of conjugate points. That is, for any trajectory of the form (2.11)

whose endpoints are X(0) = I and X(T ) = Rz(θ), one can find distinct optimal

trajectories having the same endpoints and lying arbitrarily close to X(·) in terms of

an appropriate measure of distance between trajectories. Moreover, there is an infinite
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family of optimizing trajectories from X0 = I to X1 = RZ(θ) that have identical cost

η. This is summarized in the following.

Proposition 2.3. Suppose u0
1(t) = µ cos(ωt + ϕ), u0

2(t) = µ sin(ωt + ϕ) are

optimal controls that steer (2.7) from X0 = I to X1 = RZ(θ) so as to minimize η

in (2.8), and suppose α ∈ (−π, π]. Then the control inputs u∗1(t) = µ cos(ωt + ϕ +

α), u∗2(t) = µ sin(ωt+ϕ+α) also steer (2.7) from X0 = I to X1 = Rz(θ) in the same

T units of time with the same value of the cost function η.

Proof. The optimal trajectory corresponding to the control inputs u0
1, u

0
2 is given

by (2.11) with u1(0) = µ cosϕ and u2(0) = µ sinϕ. In terms of this X(·), define

Y (t) = Rz(α)X(t)Rz(α)T . Now Y (0) = X(0) and since Rz(α) and X1 = Rz(θ)

commute, it is also the case that Y (T ) = X(T ). Now

Y (t) = Rz(α)eΩte(−Ω+Ω0)tRz(α)T

= eΩtRz(α)e(−Ω+Ω0)tRz(α)T

= eΩte(−Ω+Ωα)t,

where Ωα = Rz(α)Ω0Rz(α)T . In the same way that (2.10) and (2.11) are related, we

see that Y (·) satisfies the differential equation

Ẏ (t) = eΩtΩαe
−ΩtY (t), Y (0) = I.

By noting that

eΩtΩαe
−Ωt =







0 0 µ sin(ωt+ α+ ϕ)

0 0 −µ cos(ωt+ α+ ϕ)

−µ sin(ωt+ α+ ϕ) µ cos(ωt+ α+ ϕ) 0






.

we conclude the proof.

Returning to the optimal control problem of steering (2.13) between points x0 and

x1 on S2, we note that there is some X ∈ SO(3) such that x1 = Xx0 and optimal

controls steering x0 to x1 time T are given by the solution of the corresponding

problem on SO(3) of steering I to X in one unit of time. (The proof is easy: The

optimal control cost could not be greater than the least cost of steering I to Y over

all Y ∈ SO(3) such that Y x0 = x1. Clearly, the cost could also not be less.)

This suggests that one approach to optimally steering (2.13) is to lift the problem

from S2 to SO(3). Such lifting must be done carefully, however, because even ifX,Y ∈
SO(3) both act on x0 such that Xx0 = Y x0 = x1, it need not be the case that the cost

(2.8) of optimally steering I to X is the same as the cost of steering I to Y . On the

other hand, one can also find examples of multiplicities of optimal trajectories between
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given points on S2 that have identical costs but which look strikingly different. For

example, consider the problem of steering a point on the equator of S2 to a different

point on the equator. If we impose the additional constraint that the z-axis orientation

of the sphere should remain unchanged as a result of the motion, then the net motion is

a rotation of the sphere of the form Rz(θ). The optimal controls are given by Theorem

2.2. By Proposition 2.3, it follows that if u0
1(t) = µ cos(ωt+ ϕ), u0

2(t) = µ sin(ωt+ ϕ)

are optimal controls steering x0 to x1 in this way, then for any ψ ∈ [0, 2π), the control

inputs u∗1(t) = µ cos(ωt+ ϕ+ ψ), u∗2(t) = µ sin(ωt+ ϕ+ ψ) also steer (2.13) from x0

to x1 in one unit of time with the same cost η. Figure 1 illustrates two optimal paths

on S2 having the same start and end point and the same cost.

Fig. 1. As indicated in Proposition 2.3, there is an infinite family of optimizing trajectories

with start and end points on the equator of S2. The start point here (square) is (1, 0, 0), and

the end point (circle) is (cos(0.3), sin(0.3), 0). The “clockwise” trajectory is generated by u1(t) =

6.27602 cos(0.3t + π), u2 = 6.27602 sin(0.3t + π) while the “counterclockwise” trajectory is generated

by the control inputs u1(t) = 6.27602 cos(0.3t + 0.2), u2 = 6.27602 sin(0.3t + 0.2). Both trajectories

are optimizing in terms of the cost criterion (2.8), and both yield the same value of η.

Example 2.4. Models from classical and quantum mechanics.

a) The ball and plate system: Consider a ball that rolls without slipping between

two flat, horizontal plates as depicted in Figure 2. It is convenient to assume the

bottom plate is fixed. Suppose the ball has unit radius, and fix a coordinate system

whose x- and y-axes lie in the fixed bottom plate with the positive z-axis being

perpendicular to the plate in the direction of the ball. Call this the (bottom) “plate

frame.” We keep track of the motion of the ball by keeping track of the plate-frame

coordinates of the center of the ball. We also fix an orthonormal frame in the ball, and

we denote the plate-frame directions of the three coordinate axes by a 3×3 orthogonal
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x
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x
x
1

1
2

v1

Fig. 2. A ball rolling without slipping between two flat plates. We assume the bottom plate

is fixed, but the top plate moves such that it remains parallel to the bottom plate. (Figure from

Baillieul and Lehman.) [Bal2].

matrix

X =







x11 x12 x13

x21 x22 x23

x31 x32 x33






.

As the top plate moves in the plate-frame x-direction with velocity v1, the center of

the ball also moves in the same direction with velocity u1 = v1/2. This motion imparts

a counterclockwise rotation about the y-axis, and since the ball has unit radius, the

angular velocity is also u1. Similarly, if the top plate moves in the (plate-frame) y-

direction with velocity v2, the center of the ball moves in the y direction with velocity

u2 = v2/2, and the angular velocity imparted about the x-axis is −u2. The kinematic

description of this problem is obtained by differentiating X with respect to time:

Ẋ = ΩX,

where

Ω =







0 0 v1/2

0 0 v2/2

−v1/2 −v2/2 0






.

Note that the components of the angular velocity matrix Ω describe rotations about

axes that are always parallel to the plate-frame x and y axes and instantaneously
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centered at the origin of the ball frame. By moving the top plate in the x and y-

directions so that v1 and v2 are π/2-out-of-phase sinusoids, we can cause the ball to

undergo a rotation about the z-axis of the type studied above.

b) Quantum spin systems: Prototypical models appearing in recent work on

quantum systems describe the dynamics of spin-1/2 particles immersed in an elec-

tromagnetic field. These are modeled as systems evolving on SU(2) such as (2.3)

([Dal, DAlDa]) or systems evolving on SO(3) ([LiKh]). In either case, we are in-

terested in controlled motions on the Bloch sphere, which may be thought of as a

coset space SU(2)/U(1) or SO(3)/SO(2). In the case in which there is no Larmor

dispersion, the equations of interest are

(2.14) ẋ = ǫ[u1(t)B1 + u2(t)B2]x,

where (u1(t), u2(t)) describes a time-varying rf-field that is transverse to a fixed static

field aligned with the z-axis. The parameter ǫ models the dispersion in amplitude of

the rf-field. (See [LiKh] for information on quantum control problems on the Bloch

sphere.)

c) Two-agent control of the ball and plate system: The control objective in spin

systems is to modulate the rf-field so as to influence the motion of the Bloch vector via

(2.14). If we imagine the control input fields u1, u2 as generated independently–say

by two agents Alice and Bob—we can think of the quantum control problem as a

game where the agents must act collaboratively to produce a desired motion on the

Bloch sphere. To pursue the classical mechanical analogue, suppose Alice and Bob

hold adjacent sides of the (square) top plate in the above ball and plate system. Alice

and Bob both push and pull the plate in sinusoidal motions of the same amplitude.

By adjusting the relative phase in terms of their sinusoidal inputs, they can produce

different types of motions of the Bloch vector. If the two agents execute plate motions

that are perfectly in phase, the Bloch vector executes an oscillatory motion along a

meridian connecting the north and south poles of the Bloch sphere. On the other

hand, if Alice and Bob’s sinusoids are even slightly out of phase, the motion of the

vector will have a component of rotation about the vertical axis. If the sinusoids are

π/2 out-of-phase—as in the case of the optimal controls discussed above, the Bloch

vector will tend to precess about the z-axis. Indeed, suppose the parameters µ, ω, and

ϕ are as in Theorem 2.2. Then applying the control inputs u1(t) = µ cos(ωt+ϕ) and

u2(t) = µ sin(ωt+ ϕ) to (2.14) starting at (x1(0), x2(0), x3(0) = (ω, u1(0), u2(0)) will

cause a pure precession—as depicted by the black line in Figure 3. For initial vectors

in a neighborhood of (ω, u1(0), u2(0)), the motion will not be a pure precession but

will have an oscillatory component as also depicted in Figure 3.

Remark 2.1. The Bloch sphere is used in quantum mechanics to represent

two-state systems—known as qubits. Whether practical means of manipulating ex-

perimental realizations of qubits can be achieved is unclear. The aim of the present



118 WING SHING WONG AND JOHN BAILLIEUL

Fig. 3. Extremal paths on the Bloch sphere generated by out-of-phase sinusoidal control loops

applied to (2.14).

paper is to engage in a preliminary assessment of the complexity of dealing with

information by changing the state of systems of the form (2.14). It is of interest

that all calculations under consideration are strictly reversible, and hence, there is no

discarded information in the sense of Toffoli’s discussion of reversible computations,

[Tof]. The models we consider in the sequel have some but not all the features of

nuclear magnetic resonance systems wherein a modulated rf-field might be used to

alter the spin alignments of particles. We refer to [MaKha] for further details.

Example 2.5. The Heisenberg system (also known as the nonholonomic

Brockett Integrator). The systems we have defined on SU(2), SO(3), and S2 have

been widely studied in both nonlinear control and mathematical physics. Another

system exhibiting essential features of those above is the Heisenberg system defined

on R
3

(2.15)







ẋ1

ẋ2

ẋ3






=







u1

u2

u2x1 − u1x2






.

In much of his writing over the last quarter century, R.W. Brockett chose to illustrate

some fairly deep ideas regarding nonlinear geometric control theory in terms of this

system. In light of this and because of its simple elegance, we shall focus the discussion

in the sections to follow on the Heisenberg system. The discussion applies with little

or no change to the systems introduced above.
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3. Control Communication Complexity of Distributed Control System.

In this section, we recall the concept of control communication complexity which was

introduced in [Wong]. To focus on the part relevant to this paper, some simplifications

and modifications have been adopted. Consider a distributed system controlled by

Alice and Bob with an aim to jointly optimize the terminal state of a dynamic system

(3.1) (Σ)











ẋ = f(x, uA, uB), x0 ∈ R
N , (a)

yA = hA(x), (b)

yB = hB(x). (c)

Here hA and hB represent the respective observation function for Alice and Bob, while

uA and uB represent the respective control functions. Details on these functions will

be provided below. Note that there is no direct communication link between the agents

and that the initial state x0 is assumed to be known to the agents for determining

the feedback control function.

Let NA and NB be finite sets and H be a function from NA ⊗ NB ⊗ R
N to R.

Given a choice of Alice, α ∈ NA, that is not directly disclosed to Bob and a choice

of Bob, β ∈ NB, that is not directly disclosed to Alice, the objective is to design

corresponding control inputs uA(α) and uB(β) that jointly drive the system (3.1) to

reach a target state x(T ) at time T so that

(3.2) H(α, β, x(T ))

achieves the global minimal value. Moreover, it is expected that the value of T and

x(T ) should become known to the agents at some finite time T ′. The ordered pair,

(Σ, H) represents such a distributed control system.

In order to ensure the optimal state can be reached, the agents have to employ

appropriately designed distributed controls. Following the network control models,

(see for example [WoBr1], [WoBr2], [LiBa], and the references in [BaAn],) these con-

trols are based on finitely coded observations and are communicated to the dynamical

system via control codewords with finite word length. The coding and decoding are

assumed to take place in discrete time intervals of length δ. For simplicity, we assume

that the coding/decoding intervals are of uniform duration and that T is an integer

multiple of δ.

To fix ideas, let the observation coding functions (possibly time-dependent) be

represented by Q
(n)
A and Q

(n)
B respectively, so that the codeword sent to Alice is

represented by

(3.3) ψ
(n)
A = Q

(n)
A (hA(x(nδ))).

The coded observation sent to Bob is represented by
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(3.4) ψ
(n)
B = Q

(n)
B (hB(x(nδ))).

Let R(n)
A and R(n)

B represent the ranges of Q
(n)
A and Q

(n)
B respectively. These

maps are assumed to be surjective and the number of information bits needed for

communicating the observations to the agents is given by

(3.5) ⌈ln2 |R(n)
A |⌉ + ⌈ln2 |R(n)

B |⌉.

Note that if the coding at a given time is described by a constant function then no

information bit needs to be communicated.

At time nδ the agents make decision regarding the controls to be used in the time

interval

[nδ, (n+ 1)δ) .

The choice of the control depends on, α, β, and the observation codewords communi-

cated up to the current time. One can therefore represent the control codeword sent

by Alice at time nδ by

(3.6) ζ
(n)
A = K

(n)
A (α, ψA(0), . . . , ψA(n)).

Similarly, represent the codeword sent by Bob at time nδ is given by

(3.7) ζ
(n)
B = K

(n)
B (β, ψB(0), . . . , ψB(n)).

Let U (n)
A and U (n)

B represent the set of control codewords used by Alice and Bob

respectively at time nδ; then the number of information bits the agents use in order

to communicate their decision to the system is given by

(3.8) ⌈ln2 |U (n)
A |⌉ + ⌈ln2 |U (n)

B |⌉.

The actual controls to be applied during the time interval [nδ, (n+ 1)δ) are as-

sumed to be prestored at the dynamical systems and are selected based on the se-

quence of control codewords received so far, so that for t ∈ [nδ, (n+ 1)δ),

uA(t) = u
(n)
A (ζ

(0)
A , . . . , ζ

(n)
A )(t)

for Alice and

uB(t) = u
(n)
B (ζ

(0)
B , . . . , ζ

(n)
B )(t)

for Bob.
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To complete the discussion, the following definitions are modified from [Wong].

Definition 3.1. The following function sequences define a protocol for the dis-

tributed control system (Σ, H) :

(3.9) ProtocolΩ



















{

Q
(0)
A , Q

(0)
B , Q

(1)
A , Q

(1)
B , . . .

}

,
{

K
(0)
A ,K

(0)
B ,K

(1)
A ,K

(1)
B , . . .

}

,
{

u
(0)
A , u

(0)
B , u

(1)
A , u

(1)
B , . . .

}

.

Definition 3.2. A protocol Ω is said to be feasible for the distributed control

system (Σ, H) if for any choices, α ∈ NA and β ∈ NB, there exists a finite time

T = T (α, β) such that the terminal state, x(T ), for the dynamical system defined in

(3.1) under the feedback control specified by the protocol minimizes the function H.

Moreover, the agents can determine the value T and x(T ) at some finite time T ′. The

maximum of T and T ′ is known as the termination time and in general depends on

the initial choices of the agents.

If a protocol cannot achieve the target state for the choice (α, β) then T is set to

∞.

The main difference between this distributed control problem and a centralized

control problem is that Alice’s control, uA(·), cannot depend explicitly on β and Bob’s

control, uB(·), cannot depend explicitly on α. To steer the system to the target state,

the agent can start by communicating their choices to each other over the dynamical

system (3.1). It may also be possible to design control laws that achieve the goal

without requiring the agents to communicate their choice values to each other via

the dynamical system. (How this can be done will become clear in the proof of

Theorem 5.1.) Obviously, other possibilities may exist that are hybrids of these two

extreme strategies. The aim of what follows is to understand the cost (in terms of say,

equation (2.8),) and complexity (as defined next) of minimizing the function H(x0, ·, ·)
by means of (3.1).

Definition 3.3. Let N = N(α, β) = T (α, β)/δ be finite. The control communi-

cation complexity of Ω for the choice, α and β, is defined to be:

(3.10) c(Ω, α, β) =

N
∑

n=0

⌈ln2 |R(n)
A |⌉ + ⌈ln2 |R(n)

B |⌉ + ⌈ln2 |U (n)
A |⌉ + ⌈ln2 |U (n)

B |⌉.

The control communication complexity of Ω is given by

(3.11) C(Ω) = max
α,β

c(Ω, α, β).

The control communication complexity of the distributed system (Σ, H) is defined to

be the minimum of the control communication complexity over all feasible protocols:

(3.12) Y ((Σ, H)) = min
Ω
C(Ω).
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In this formulation, termination time is not an explicit part of the complexity

definition. Nevertheless, we seek to understand how the control objective affects the

complexity of the information being exchanged as well as the required energy. In the

models to be considered, there will be a tradeoff between the the time allowed and

the energy required to achieve the control objective. Hence, the maximum value of T

can be regarded as another indicator of protocol complexity. This complexity will be

referred to as the termination time complexity.

Both the control communication complexity and the termination time complexity

do not address directly the complexity of the control function itself. Note however

that there are many alternatives for defining such complexity; one approach is via the

concept of “control energy”:

(3.13)

∫ T

0

u2
A(t) + u2

B(t) dt,

where the integration is up to the termination time for the given choices of the agents.

The maximum value of the control energy over all choices of α and β made by the

two agents can be regarded as a measure of the control function complexity with the

understanding that controls requiring more energy are inherently more complex. This

complexity will be referred to as the control energy complexity. If there is a bound

CE > 0 on the available input energy, then all choices must satisfy

(3.14)

∫ T

0

u2
A(t) + u2

B(t) dt ≤ CE ,

and it will not be possible to evaluate certain functions SH(·, ·). For any evaluation,

the control energy (3.13) required to steer systems of the type we are considering

along specified paths is always inversely proportional to the time allowed, T .

In the rest of the paper, the relationship between control communication complex-

ity, termination time complexity, and control energy complexity will be investigated

via a concrete example, namely the Brockett Integrator.

4. Brockett Integrator and Loop Inputs. As a concrete example, consider

the Heisenberg system (also known as the Brockett Integrator [RWB2]):

(4.1)







ẋ

ẏ

ż






=







uA

uB

uBx− uAy






,







x(0)

y(0)

z(0)






=







x0

y0

0






∈ R

3.

For observation functions, define

(4.2) hA(t) = hB(t) = z(t).

Denote this system as ΣB. Brockett showed in [RWB3] that for controls, (uA(t),

uB(t)), whose trajectory, (x(t), y(t)), describes a simple closed curve over the control
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cycle, [0, τ ], the following result holds:

(4.3) z(τ) = ±2A,

where A is the area enclosed by the curve (x(t), y(t)). In view of this and to simplify

the discussion in this paper, the control functions are assumed to satisfy the condition

that the trajectory:

(4.4) (

∫ t

0

uA(r)dr,

∫ t

0

uB(r)dr)

defines a closed curve as t ranges from 0 to T . These control functions will be referred

to as loop inputs.

Let NA and NB be finite sets. Consider a distributed control system with an

optimization function, H , of the form

(4.5) H(α, β, (x, y, z)) = (z − SH(α, β))2,

for some function SH : NA ⊗ NB → R
3. Due to the loop input assumption, the

terminal states are of the form:

(4.6) (x0, y0, z(T )).

Hence, we can simplify the notation by assuming that SH : NA ⊗ NB → R, so that

(x0, y0, SH(α, β)) is the unique state that minimizes the function H for the choice,

(α, β).

As specific examples, consider the functions

(4.7) H1(α, β, z) = (z − d2αβ)2,

and

(4.8) H2(α, β, z) = (z + d2αβ)2.

If NA = NB = {−1, 1}, then the terminal states can be represented by the

following tables:

β = 1 β = −1

α = 1 d2 −d2

α = −1 −d2 d2

Table 1

β = 1 β = −1

α = 1 −d2 d2

α = −1 d2 −d2

Table 2

The goal of the present section is to determine the control communication com-

plexity of the distributed control system (ΣB, H) for several specific choices of H .
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For the Brockett Integrator, the control energy complexity constraint can be

simplified in the following way:

CE ≥
∫ T

0

u2
A(t) + u2

B(t) dt(4.9)

=

∫ T

0

(

dx

dt

)2

+

(

dy

dt

)2

dt(4.10)

=

∫ T

0

ds

dt

2

dt =
L2

T
,(4.11)

where L is the length of the closed curve (x(t), y(t)). By the well-known isoperimetric

inequality, (see for example [Osserman],) the following result holds:

(4.12) L2 ≥ 4πA.

Hence

(4.13) TCE ≥ 4πA.

This leads to the following result connecting termination time complexity and control

energy complexity:

Proposition 4.1. For any α and β,

(4.14) 2π|SH(α, β)| ≤ TCE .

Given a control energy constraint and any state of the form (x0, y0, z), it is possible

to design loop controls, uA and uB, to reach that state if a large enough termination

time is permitted. However, if the termination time is bounded, then there is a bound

on the norm of the reachable state as given by (4.14).

For a general distributed control system, (ΣB, H), defined by (4.1) and (4.5), if

the termination time is unconstrained, one can show that a feasible protocol always

exists. The proof of this will be provided in the next section. Moreover, the control

communication complexity does not depend on the control energy constraint. If the

termination time is bounded, clearly each state specified in SH should satisfy the

bound in (4.14). However, this is not a sufficient condition to guarantee the existence

of a feasible protocol. These issues will be discussed in the next section.

5. Complexity of the Brockett Integrator. Consider now the distributed

control system, (ΣB, H1). Assume the termination time T is bounded. One can

construct a protocol in the following way. Depending on Alice’s choice, a single bit,

ζ
(0)
A , set equal to either -1 or 1 is sent. Define uA so that for t ∈ [0, T ],

(5.1) uA(t) =

{

−
√

2πd
T sin(2πt

T ) ζ
(0)
A = 1,

√
2πd
T sin(2πt

T ) ζ
(0)
A = −1.
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Similarly, define the control function for Bob by:

(5.2) uB(t) =

{ √
2πd
T cos(2πt

T ) ζ
(0)
B = 1,

−
√

2πd
T cos(2πt

T ) ζ
(0)
B = −1.

The trajectory of (x(t), y(t)) is a circle passing through the point (x0, y0) with radius
d√
2π

and area d2

2 . The control energy complexity is independent of the choices of the

agents and is given by

(5.3) 2πd2/T.

Direct checking confirms that these controls realize the function H1 and define a

feasible protocol that satisfies the control energy complexity constraint, so long as

(5.4) 2πd2 ≤ TCE .

Note that one bit is needed for each agent to signal the selected control. Moreover,

since there are only two possible terminal states, the realized value can be commu-

nicated to each agent by using one bit of information at time T . Since two bits are

needed for communicating the control decisions and two bits are needed for commu-

nication the value of x(T ), the control communication complexity of this protocol is

four.

Similarly, under the same condition, the function H2 can be realized by the loop

inputs:

(5.5) uA(t) =

{ √
2πd
T sin(2πt

T ) ζ
(0)
A = 1,

−
√

2πd
T sin(2πt

T ) ζ
(0)
A = −1,

(5.6) uB(t) =

{ √
2πd
T cos(2πt

T ) ζ
(0)
B = 1,

−
√

2πd
T cos(2πt

T ) ζ
(0)
B = −1.

The control energy complexity of H2 is identical to H1 and is given by

(5.7) 2πd2/T.

Consider now the function H3, which is defined as:

(5.8) H3(α, β, z) =

(

z − d2

2
[β(β − 1) + αβ(β + 1)]

)2

.

Taking loop inputs of the above form, the corresponding optimal state SH(α, β) of

this function is given by the following table:

β = 1 β = −1

α = 1 d2 d2

α = −1 d2 −d2

Table 3
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Note that the norm of the states in Table 3 is equal to that of Table 1 and 2. However,

if

(5.9) d2 =
TCE
2π

,

then there is no feasible protocol that can satisfy the control energy complexity con-

straint (3.14). To prove this note that the left hand side of equation (5.9) can be

written as

(5.10) −2

∫ T

0

ydx = 2A,

for trajectories that are closed smooth curves, while the right hand side is lower

bounded by L2/(2π). Hence equation (5.9) implies:

(5.11) 4πA = L2.

It is known that the isoperimetric inequality holds for general smooth closed curves

(that is, smooth closed curves which may not be simple), with the equality holding

only for circles. (See Lemma 1.2 of [Osserman].) Let u
(α,β)
A be the control function

used by Alice and u
(α,β)
B be the function used by Bob as prescribed by the protocol.

It follows that as t ranges from 0 to T , the trajectory (u
(α,β)
A (t), u

(α,β)
B (t)) describes a

circle with radius
√
TCE

2π of the form:

(5.12)

(√
TCE
2π

cos

(

2πt

T
+ φ

)

,

√
TCE
2π

sin

(

2πt

T
+ φ

))

,

for some phase value φ. Since Bob is not aware of Alice’s choice, α, at time zero,

there is a time τ > 0, such that

(5.13) u
(d,β)
B (t) = u

(−d,β)
B (t)

for t ∈ [0, τ). It follows that this must hold for all t and

(5.14) u
(d,β)
B = u

(−d,β)
B .

Similar argument shows that

(5.15) u
(α,d)
A = u

(α,−d)
A .

The functions that can be realized are H1 and H2 under the stated control energy

constraints, but not H3.

If

(5.16) d2 <
TCE
2π

,
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then there can be more than one way to construct a feasible protocol for H3. One

approach is provided by Theorem 5.1. We consider a different approach here. Let

δ > 0 be chosen to satisfy:

(5.17) d2 <
(T − δ)CE

2π
.

The basic idea is to construct a protocol with two phases. In the first phase, lasting

from 0 to δ, one of the agents, say Alice, communicates her choice to the other agent.

This can be done, for example, by setting

(5.18)
uA(t) = ǫsgn(α) sin(2πt

δ ),

uB(t) = ǫ cos(2πt
δ ),

for t ∈ [0, δ). Note that Bob’s control can be pre-determined as it does not depend

on β, and hence requires no control bit for communication. The value of α can be

decided from reading the sign of z(δ). By setting ǫ to be close to zero, the control

energy in this phase can be arbitrarily small. In the second phase, lasting from δ to

T , Alice sets the control function to be

(5.19) uA(t) =

√
2πd

T − δ
sin

(

2π(t− δ)

T − δ

)

,

while the control function for Bob is of the form:

(5.20) uB(t) = ±
√

2πd

T − δ
cos

(

2π(t− δ)

T − δ

)

.

The sign for uB is chosen based on (α, β), the value of which is known to Bob at time

δ, after having received the information bit indicating the sign of z(δ). On the other

hand, the control of Alice is pre-determined as it does not depend on α, and hence

requires no control bit for communication. At time T , Alice can be informed of the

terminal state value by one bit of information. Therefore, this protocol requires four

bits of communication information: one control bit and one observation bit for Alice

and similarly for Bob.

One can summarize these results in the following proposition:

Proposition 5.1. If

(5.21) 2πd2 ≤ TCE ,

the distributed control system (ΣB, H1) or (ΣB, H2) has a control communication com-

plexity equal to four under the control energy constraint (3.14). There is no feasible

protocol otherwise. For the distributed control system, (ΣB, H3), if

(5.22) 2πd2 < TCE ,

the control communication complexity is four. Otherwise there is no feasible protocol.
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Proof. We have shown that there exist protocols for these functions that require

four bits of communication information. If follows from Theorem 1 of [Wong] that the

lower bound of the control communication complexity of these systems is four. Hence

the control communication complexity is four. The other statements are established

by the discussion preceding the statement of the proposition.

For the case where time complexity is not constrained, the following result holds:

Theorem 5.1. Let H be a function from NA ⊗NB ⊗ R to R where |NA| = NA

and |NB | = NB. Then the control communication complexity of the distributed control

system, (ΣB, H), is bounded above by:

(5.23) ⌈ln2NA⌉ + ⌈ln2NB⌉.

Proof. Represent the choices of Alice by {1, 2, . . . , I} and the choices of Bob by

{1, 2, . . . , J}. For any positive τ , set the terminating time, T , to be

(5.24) T = Iτ.

Define a protocol so that when Alice chooses i, the corresponding control for Alice is

of the form:

(5.25) ui(t) =

{

−
√

2π
τ sin

(

2πt
τ

)

t ∈ [(i− 1)τ, iτ),

0 otherwise.

If Bob chooses j, then the corresponding control for Bob is of the form:

(5.26) vj(t) =























√
2π
τ H(1, j) cos

(

2πt
τ

)

t ∈ [0, τ),
√

2π
τ H(2, j) cos

(

2πt
τ

)

t ∈ [τ, 2τ),
...

...
√

2π
τ H(I, j) cos

(

2πt
τ

)

t ∈ [(I − 1)τ, Iτ ].

One can show that if ui and vj are used, then z(T ) = H(i, j). Moreover,

(5.27)

∫ T

0

u2
i (t) + v2

j (t)dt =
πI2

T

(

1 +

I
∑

k=1

H2(k, j).

)

By choosing τ to be large enough, one can see that the control energy complexity

constraint can be satisfied.

The protocol described in the proof to the previous theorem has a control energy

complexity equal to:

(5.28) (4 + 2/d2)
2πd2

T
,

which is (4+2/d2) times larger than the minimum control energy for H1 or H2. When

T is required to be fixed or bounded, but if d is small enough, then this provides an

alternative protocol for solving the distributed control system, (ΣB, H3). At the
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terminal time, the agents need to be informed of the terminal state value. Hence the

communication control complexity of this protocol is also four.

If the loop inputs are restricted to be piecewise constant functions, the trajectory

of (x(t), y(t)) is a k-sided polygon if it is a closed curve. In this case, the isoperomertric

inequality is sharpened to [Osserman]:

(5.29)
L2

A
≥ 4

k
tan

π

k
> 4π.

From this one can obtain the following result.

Proposition 5.2. Consider the distributed control system, (ΣB, H1) or (ΣB ,

H2), using piecewise constant controls with a trajectory (x(t), y(t)) defining a k-side

polygon. Under the control energy constraint (3.14) there is no feasible protocol if

(5.30) d2 2

k
tan

π

k
> TCE .

Otherwise, the control communication complexity is four.

We conclude the section with remarks on the control energy complexity of the

distributed control system, (ΣB, H3). From previous discussion we know that there

exists a feasible protocol that requires two communication bits and has a control

energy complexity that is (4 + 2/d2) times larger than that of either (ΣB , H1) or

(ΣB, H2). We will show in the following example how to construct lower control

energy protocols that require the same amount of communication bits.

5.1. The lazy Bob protocol. If Alice and Bob are allowed to each execute two

loops instead of one, the following inputs define a protocol solving (ΣB , H3). Alice

executes

(5.31) uA(t) = a sin 4πt
T 0 ≤ t ≤ T

in the case that α = 1, and

(5.32) uA(t) =

{

a sin 4πt
T 0 ≤ t ≤ T/2

−a sin 4πt
T T/2 < t ≤ T

in the case that α = −1. Represent the double loop control in (5.31) as (a, a) and the

double loop control in (5.32) as (a,−a).
Bob, on the other hand, executes only a single loop—either in the interval [0, T/2]

if β = 1 or in [T/2, T ] if β = −1. Bob provides zero input during half the time interval

[0, T ] in either case. (Hence the name of the protocol.) Represent Bob’s control loop

by:

(b, 0) ↔ uB(t) =

{

b cos 4πt
T 0 ≤ t ≤ T/2

0 T/2 < t ≤ T ;

(0, b) ↔ uB(t) =

{

0 0 ≤ t ≤ T/2

b cos 4πt
T T/2 < t ≤ T.
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Taking these inputs, the state table SH(α, β) (corresponding to (5.8)) is

(b, 0) (0, b)

(a, a) −abT 2

8π −abT 2

8π

(a,−a) −abT 2

8π
abT 2

8π

Table 4

For consistency with Table 3, the terms a and b are chosen so that

(5.33) −abT
2

8π
= d2.

We note that the cost of evaluating any cell in Table 4 is

∫ T

0

uA(t)2 + uB(t)2 dt =
1

2
(a2 +

b2

2
)T.

From this, an easy calculation shows that the loop amplitudes that minimize this cost

subject to the constraint (5.33) are

a = ±2 · 2 1

4

√
πd

T
, b = ∓2 · 2 3

4

√
πd

T

with corresponding cost 2π 2
√

2d2

T . For the sake of comparison, the cost (=control

energy (3.14)) of computing entries for H1 and H2 in Tables 1,2 resp. is 2π d2

T , showing

the cost of the Lazy Bob protocol to be higher by a factor of 2
√

2.

Assuming the absolute value of the function H is fixed to be d2, there are a total

of sixteen 2 × 2 matrices which can be listed explicitly as

d2

(

σ11 σ12

σ21 σ22

)

where σij = ±1. There are clearly sixteen such matrices, and these can be divided

into two groups of eight. All those having an odd number of σij ’s equal to −1 have

rank 2. All those having an even number of σij ’s equal to −1 have rank 1.

Proposition 5.1 can be extended to all these cases, so that all functions with the

same rank have identical complexity. This phenomenon is not a coincidence as the

analysis in ([WongBal]) reveals.

6. Phased-Loop Protocols and Parametrically Optimal Solutions to the

Standard Parts Problem. Suppose Alice chooses the control loop input

(6.1) uA(t) = a sin(
2πt

T
+ ϕA),

and Bob chooses

(6.2) uB(t) = b sin(
2πt

T
+ ϕB).
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Then in T units of time, the system (4.1) evolves from (x(0), y(0), z(0)) = (0, 0, 0) to

(0, 0, z(T )) where

(6.3) z(T ) =
abT 2

2π
sin(ϕA − ϕB).

ζ
(0)
B = 1 ζ

(0)
B = 0

ζ
(0)
A = 1 d2 d2

ζ
(0)
A = 0 d2 −d2

Table 5

We consider a restricted version of the standard parts optimization problem in-

troduced in Section 1. The problem is to have Alice and Bob compute the function

specified in Table 5 using the following choices of input loops: Suppose we define

(

Alice

loops

)

=

{

uA1(t) = a1 sin(2πt
T − ϕ1) 0 ≤ t ≤ T if ζ

(0)
A = 1,

uA2(t) = a2 sin(2πt
T − ϕ2) 0 ≤ t ≤ T if ζ

(0)
A = 0,

and

(

Bob

loops

)

=

{

uB1(t) = b1 sin(2πt
T − ψ1) 0 ≤ t ≤ T if ζ

(0)
B = 1,

uB2(t) = b2 sin(2πt
T − ψ2) 0 ≤ t ≤ T if ζ

(0)
B = 0.

The goal of the optimization is to select values of the parameters ai, bj , ϕk, ψℓ, 1 ≤
i, j, k, ℓ ≤ 2 such that

(6.4) η =

∫ T

0

uA1(t)
2 + uA2(t)

2 + uB1(t)
2 + uB2(t)

2 dt

is minimized. This is a restricted version of the standard parts problem in the sense

that the functional is to be minimized with respect to the parameters and over an

infinite-dimensional function space of control inputs. The restriction simplifies the

problem in several ways. First the integral can be easily evaluated, and in light of

(6.3), the optimization problem reduces to finding the minimum of

(6.5) a2
1 + a2

2 + b21 + b22,

subject to the following table of constraints:
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ζ
(0)
B = 1 ζ

(0)
B = 0

ζ
(0)
A = 1 a1b1 sin(ϕ1 − ψ1) = d̄ 2 a1b2 sin(ϕ1 − ψ2) = d̄ 2

ζ
(0)
A = 0 a2b2 sin(ϕ2 − ψ1) = d̄ 2 a2b2 sin(ϕ2 − ψ2) = −d̄ 2

where d̄ = d
√

2π/T with d as given in Table 5.

Table 5′

Each entry in the table depends only on the phase differences ϕi−ψj (i, j = 1, 2), and

hence there is no loss of generality in assuming that ϕ1 = 0. Using the constraints in

the table, we can rewrite the objective function (6.5) in terms of a1 to get

a2
1(1 + λ2) +

1

a2
1

µ2

where

λ = − sinψ1

sin(ϕ2 − ψ1)
and µ = d̄

√

1

sin2 ψ1

+
1

sin2 ψ2

.

This is easily seen to be minimized with respect to a1 if

a1 = ±
(

µ2

1 + λ2

)
1

4

.

The corresponding value of the objective function is 2
√

µ2(1 + λ2), which in terms of

the phase parameters may be written as

(6.6) 2d̄

√

(sin2 ψ1 + sin2 ψ2)(sin
2 ψ1 + sin2(ϕ2 − ψ1))

| sinψ1 sinψ2 sin(ϕ2 − ψ1)|
.

The constraints of Table 5′ allow us to express the amplitude parameters a2, b1, b2 in

terms of the phase parameters ϕ2, ψ1, ψ2, and moreover, they impose a relationship

among these parameters given by

sinψ1 sin(ϕ2 − ψ2) + sinψ2 sin(ϕ2 − ψ1).

This defines ϕ2 as an implicit function of ψ1 and ψ2 which may be written explicitly

as

ϕ2(ψ1, ψ2) = arctan[2 sinψ1 sinψ2, sin(ψ1 + ψ2)] or

ϕ2(ψ1, ψ2) = arctan[−2 sinψ1 sinψ2,− sin(ψ1 + ψ2].

The values of ϕ2 in these formulas differ by π, but the minimum values of the ex-

pression (6.6) are the same in either case. Using elementary techniques involving first

and second derivatives, we find that in the range −π < ψ1, ψ2 < π, (6.6) has local
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minima at the eight points (π/4,−π/4), (−π/4, π/4), (3π/4,−3π/4), (−3π/4, 3π/4),

(π/4, 3π/4), (π/4,−3π/4), (3π/4, π/4), (−3π/4,−π/4). The function (6.6) takes on

the same value for each of these choices. For any of these minima, the corresponding

value of ϕ2 may be selected as ±π/2, and for either of these values, we may find

corresponding values of the amplitude parameters ai, bj from Table 5′. The signs of

the these parameters must be chosen to satisfy the constraints of Table 5′, but in all

cases the magnitude is 2
1

4 d̄ = 2
1

4

√
2πd/T . The corresponding optimal value of the

objective function (6.5) is 8π
√

2d2

T 2 with the corresponding value of η given by 4π
√

2d2

T .

We summarize these remarks in the following:

Proposition 6.1. The problem of finding control inputs (uAi, uBj) that steer the

system (4.1) so as to evaluate the function given in Table 5 is solved by the functions

(Alice loops) and (Bob loops) given above, where we specify that |ϕ1 − ϕ2| = π/2,

|ψ1 − ψ2| = π/2, and |ϕ1 − ψ1| = π/4 or 3π/4, and all amplitude parameters ai, bj

will have equal magnitudes and can be specified as

a1 = 2
1

4

√
2πd/T, a2 = sgn[sin(ϕ1 − ψ1) sin(ϕ2 − ψ1)] a1

b1 = sgn[sin(ϕ1 − ψ1)] a1, b2 = sgn[sin(ϕ1 − ψ2)] a1.

Among all sinusoidal inputs depending on phase and amplitude parameters as in (6.1)

and (6.2), these choices locally minimize the performance index (6.4).

Remark 6.1. The optimal cost of the solution to the standard parts problem

given by Proposition 6.1 is of course directly related to the energy complexity as

discussed in the previous two sections. To make a direct comparison with our previous

calculations, we note that the energy complexity will be half the optimal standard

parts value—i.e. 2π
√

2d2

T . Thus the complexity is half that of the “Lazy Bob” protocol

but a factor of
√

2 larger than the energy complexity of the solutions (5.1)-(5.2) and

(5.5)-(5.6) for the functions given in Tables 1,2 in Section 5. It follows that the Lazy

Bob Protocol is not optimal.

Remark 6.2. A geometric variational solution to the problem of finding input

pairs (uAi, uBj) that compute the function of Table 5 while minimizing (6.4) over the

set of all functions in, say, L2[0, T ] is not presently available. It will be shown else-

where ([WongBa1]) in the context of a broader theory that the phased-loop solution

presented here has the same minimum energy requirement as that of a different set

of parametrically-optimal solutions in which inputs are represented by Fourier series

on [0, T ]. While the phased-loop solution to the minimum-energy evaluation of 2 × 2

matrices appears to be a natural extension of classical results in geometric optimal

control, further work must be done to characterize the matrices that can be evaluated

in this way. This work will be reported elsewhere.

7. The Effect of Phase Uncertainty in the Input Loops. In thinking about

physical implementations of the above distributed control systems—for instance in

quantum spin systems or in our ball-and-plate system from classical mechanics, we
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turn our attention to the phase relationships of the two control input loops. To

fix ideas, consider two control inputs uA and uB to (4.1) which generate x and y

trajectories:

x(t) = λ sin(ωt+ ϕ) and y(t) = λ sin(ωt+ ϕ+ ψ).

We explicitly integrate ż = uBx− uAy to obtain

z(t) = z0 − (λ2ω sinψ)t.

Over one cycle, 0 ≤ t ≤ 2π/ω, (x(t), y(t)) traces an ellipse whose semi-major axes

are aligned with the positive and negative forty-five degree lines in the x,y-plane. In

agreement with (4.3), the change in the value of z over this cycle, 2πλ2 sinψ, is two

times the area of the ellipse. Thus, the phase offset of the control loop inputs uA(·)
and uB(·) is seen to be a geometric quantity.

To explore the geometric phase in more detail, we note that the control inputs

uA, uB that generate the elliptical path in the x,y-plane are given by

uA(t) = λω cos(ωt+ ϕ) and uB(t) = λω cos(ωt+ ϕ+ ψ).

A straightforward calculation shows that these satisfy the ordinary differential equa-

tion:

(7.1)

(

u̇A

u̇B

)

=

(

−α β

−β α

)(

uA

uB

)

where α = ω cosψ/ sinψ and β = ω/ sinψ. This representation allows us to ex-

amine the geometric aspect of phase differences in the inputs in the context of the

SU(2),SO(3), and S2 examples of Section 2. To fix ideas we return to Examples 2.2

and 2.3. By a slightly inexact analogy with equation (2.9), it follows from (7.1) that

we can write

(7.2) Ω̇ = A(ψ)ωΩ + ΩA(ψ)Tω,

where

Ω(t) =







0 0 uB(t)

0 0 −uA(t)

−uB(t) uA(t) 0






,

and

A(ψ) =







cosψ
sinψ

1
sinψ 0)

− 1
sinψ − cosψ

sinψ 0

0 0 0






.
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Equation (7.2) may be explicitly solved, and we write the solution as

(7.3) Ω(t) = eA(ψ)ωtΩ0e
A(ψ)Tωt,

where

Ω0 =







0 0 uB(0)

0 0 −uA(0)

−uB(0) uA(0) 0






.

A subtle but crucial difference between

(7.4) Ẋ(t) = Ω(t)X(t), X(0) = I

and equation (2.10) is that the exponentiated A(ψ) 6= −A(ψ)T , and we do not have

an elegantly simple solution to (7.4) along the lines of (2.11). We therefore turn to

approximation for further insight. Specifically, we consider small deviations from the

ideal case of the previous sections in which uA(·) and uB(·) are sinusoids whose phases

differ by 90◦—i.e. ψ = ±π/2. Consider specifically the case ψ = −π/2 + ǫ, so that

(7.5) A(
π

2
+ ǫ) = B + ǫC + o(ǫ),

where

(7.6) B =







0 −1 0

1 0 0

0 0 0






and C =







−1 0 0

0 1 0

0 0 0






.

Noting that BC + CB = 0, a straightforward calculation shows that

eA( π

2
+ǫ)ωt = eBωt + ǫC sin(ωt) + o(ǫ).

We can prove the following:

Lemma 7.1. Consider the control system (2.7) where the control inputs are

u1(t) = λω cos(ωt+ ϕ),

u2(t) = λω sin(ωt+ ϕ+ ǫ),

with ǫ being a small positive quantity. The equation (2.7) may be written as

(7.7) Ẋǫ(t) = Ωǫ(t)Xǫ(t), X(0) = I,

where

(7.8) Ωǫ(t) = eBωtΩ0e
−Bωt + ǫ sinωt(CΩ0e

−Bωt + eBωtΩ0C) + o(ǫ)

and B and C are as above.
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Proof. If we specify ψ = π
2 + ǫ in the above definition of uB and then rename uA

to be u1 and uB to be u2, it is obvious that

(7.9)

(

u̇1

u̇2

)

=

(

−α β

−β α

)(

u1

u2

)

,

with α,β being defined as in equation (7.1). Expanding these coefficients along the

lines of (7.5), we write

α = ωǫ+ o(ǫ) and β = −ω + o(ǫ).

Then (7.9) may be rewritten as
(

u̇1

u̇2

)

=

[(

0 −ω
ω 0

)

+

(

−ǫω 0

0 ǫω

)

+ o(ǫ)

](

u1

u2

)

.

From this, it follows that
(

u1(t)

u2(t)

)

= e(B̄+ǫC̄)ωt

(

u1(0)

u2(0)

)

+ o(ǫ),

where

B̄ =

(

0 −1

1 0

)

and C̄ =

(

−1 0

0 1

)

.

To render the zeroth and first-order terms explicitly, we expand e(B̄+ǫC̄)ωt as a series,

and as above, we note that B̄C̄ + C̄B̄ = 0. From this relationship, a straightforward

regrouping of terms shows that

e(B̄+ǫC̄)ωt = eB̄ωt + ǫC̄ sinωt+ o(ǫ).

In terms of this expression, we write the solution of (7.9) as
(

u1(t)

u2(t)

)

=
(

eB̄ωt + ǫC̄ sinωt
)

(

u1(0)

u2(0)

)

+ o(ǫ),

and a straightforward calculation shows that this is equivalent to (7.8).

Lemma 6.1 enables a proof of the following.

Theorem 7.1. Let B and C be as in Lemma 6.1, and let Yǫ(t) be the solution of

Ẏ (t) = ǫΨ(t)Y (t), Y (0) = I,

where

Ψ(t) = sinωt e(Bω−Ω0)t
[

CeBωtΩ0e
−Bωt + eBωtΩ0e

−BωtC
]

e(−Bω+Ω0)t.

Let

X̂ǫ(t) = eBωte(−Bω+Ω0)tYǫ(t).
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Then the solution Xǫ(t) of (7.7) satisfies

(7.10) ‖Xǫ(t) − X̂ǫ(t)‖ ∼ O(ǫ),

and this approximation remains valid over the time interval [0, 1/ǫ).

Proof. Equation (7.8) explicitly represents the effect of the phase perturbation on

the evolution equation (7.4). In terms of this, we may describe the effect on the state

evolution as follows. Let Φ(t) be the solution of

Ẋ(t) = eBωtΩ0e
−BωtX(t), X(0) = I.

From (2.11) this is given explicitly by

Φ(t) = eBωte(−Bω+Ω0)t.

Given Xǫ(t) defined by (7.7), let Z(t) = Φ(t)−1Xǫ(t). Then Z satisfies

Ż(t) = ǫ sinωt
[

Φ(t)−1
(

CΩ0e
−Bωt + eBωtΩ0C

)

Φ(t)
]

Z(t) + o(ǫ).

The terms between the square brackets can be rewritten to give

Ż(t) = ǫΨ(t)Z(t) + o(ǫ), Z(0) = I.

From this it follows that Y (t) as defined in the theorem statement is an approximation

of Z(t), and the approximation result claimed for Xǫ follows as a consequence.

Remark 7.1. The earlier sections of the paper have posed control communication

complexity problems for nonlinear systems through which controller-agents cooper-

atively steer the system toward various goal states by inputting different choices of

control loop inputs. The results presented in Sections 4 and 5 cover ideal cases in

which two agents (Alice and Bob) always execute loop inputs that are exactly ninety

degrees out of phase. Theorem 6.1 addresses the question of how robust this mode

of Alice and Bob’s communicating will be in the case that an actual physical action

is required in order to input the loop (e.g. controlling a ball between two plates or

modulating an rf-field, as in Section 2). Theorem 6.1 expresses the effect of phase

input uncertainty modeled in terms of a small constant phase error ǫ. Over a single

cycle of the inputs u1 and u2 (0 ≤ t ≤ 2π/ω), we expect that the state-trajectory

generated by the input loops with the error term included will not deviate much from

the ideal state-trajectory that has no phase error. Over many cycles, however, even

a small phase error can lead to large deviation from the ideal—a phenomenon that

might be referred to as phase-induced decoherence: the loss of state information with

the passage of time. A complete analysis of decoherence due to misregistration of

the amplitudes and phases of Alice and Bob’s input loops is beyond the scope of

the present paper. A typical situation for an S2-system is illustrated in Fig. 4, how-

ever, wherein the thick trajectory corresponding to a phase-error ǫ = 0.04 is plotted
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along with the corresponding thin trajectory corresponding to no phase error (i.e.

ǫ = 0). The way in which uncertainty limits what can be communicated through the

cooperative application of control inputs will be studied elsewhere.

Fig. 4. Trajectories initiated at the point (1, 0, 0) on the unit sphere S2 and generated by the

control inputs u1 and u2 of Lemma 6.1 applied to the system (2.13). Here ω = 3, λ =
√

4π2 − ω2,

ϕ = 0, and ǫ = 0 for the thin black trajectory while ǫ = 0.04 for the thick black trajectory. The

trajectories run for 0 ≤ t ≤ 2π/ω and are almost indistinguishable in the beginning and end at well

separated locations on the sphere. (a) and (b) show the “front” and “rear” views.

8. Concluding Remarks. In this paper, the concept of control communication

complexity is introduced for a family of nonlinear systems. These nonlinear systems

arise in diverse contexts, such as classical mechanics, quantum computing, and non-

holonomic systems of the type represented by the Brockett Integrator. The control

communication complexity provides a means to measure the minimum information

exchange required in order to achieve a specific control objective. The concept of

control energy complexity and time complexity are also introduced. It is shown that

there is an intricate relationship among all these complexity concepts as demonstrated

by a few examples. This initial investigation points to potentially deeper results in

several directions. One long-term objective is to discover and to understand fun-

damental connections among system dynamics, information coding, control function

design, and optimization objectives. Connections with quantum control and quantum

computing systems suggest another enticing course for further investigation.
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