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ASK NOT WHAT STRINGOLOGY CAN DO FOR YOU: ADVANCES

IN PATTERN MATCHING DRIVEN BY COMPUTATIONAL

BIOLOGY∗

ALBERTO APOSTOLICO†

Abstract. Molecular biology has posed a number of fascinating and sometimes daunting com-

putational problems, which came naturally expressed in its native language of character strings.

Through the years, some such problems have found elegant and even useful solutions in response

to the needs that originally motivated them. What is perhaps even more remarkable, several of

the ideas inspired by computational molecular biology have found application in remote and diverse

domains, so that it may be argued that molecular biology did more for computing than the latter

did for it. As a modest tribute, this paper reviews a small sample of these cases drawing from the

personal exposure of the author.
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1. Introduction. With its basic lexicon of characters, sequences and trees,

molecular biology has posed a number of interesting computational problems, some

more challenging than others, of which a few have also found elegant and even useful

solutions in the domain which originally inspired them. Among the many ideas and

paradigms brought up in the course of the development of computational molecular

biology [47], and the numerous implements developed in response to its needs, sev-

eral have found use in remote applications, so that it may be argued that by way of

inspiration and challenge molecular biology ultimately did more for computing than

vice versa.

That computational problems arising, e.g., in molecular sequence analysis might

have an impact in distant areas is not new. Nuances of the phenomenon resonate

across the milestone “time warps” volume edited by D. Sankoff and J. Kruskal in the

early Eighties [41], which listed applications of string editing ranging from tectonics to

the study of songs (see also [36]) and bird signals. Therefore, the point of the present

paper is not to show that such a fascinating interplay is possible, but only to display

a few instances, taken somewhat arbitrarily from the direct exposure of this author.

It is only fair to say that some of the notions that permeate both computing

and biosequence analysis go back to quite ancient times. Palindromic structures,
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for instance, come up in certain mysterious constructs such as the “Sator Square”,

represented by the arrangement:

S A T O R

A R E P O

T E N E T

O P E R A

R O T A S

that reads the same top-to-bottom, bottom-to-top, left-to-right, and right-to-left.

Since the earliest known appearance of the square was found in the ruins of Her-

culaneum, it is assumed that it originated in the Christian era, although the exact

meaning and use of it, if any ever existed, are still fuzzy.

It is well known that some patterns in DNA and RNA encode for higher order

structures, such as e.g. the secondary structure of RNA. And there are reasonably

good methods to obtain the secondary structure from the sequence, driven by dynamic

programming approaches to energy minimization. An alternative is to undertake a

stem and loop analysis, which may be considered a variation of the theme of homology

search. These approaches resemble the recognition of palindromes in a string, which

are words that read the same forward and backward. But the palindromes of interest

in biosequences are different in at least two respects: the copies are approximate,

and they are copies up to base complementation. For instance, ATCGCGAT would

be an exact palindrome under this convention. In computer science, palindromic

forms are especially relevant to formal languages in so far as they epitomize balanced

forms akin to parenthesis systems and the likes that are paradigmatic of context-free

languages. Whereas the latter are naturally associated to the stack fixture of a push-

down automaton, the study of more conventional algorithms to find all palindromes of

a string or to recognize special classes of languages called PALSTAR [28] has many

fascinating aspects and some real jewels of algorithmics, such as Manacher’s linear

time detection of all maximal palindromes [34].

Among remote cases of premonition we find the “semantic” Hamming distance

proposed in the following excerpt from Vanity Fair of March 29, 1879, that I believe

to have been brought to my attention by Mike Waterman.

“A new puzzle... The rules of the puzzle are simple enough. Two

words are proposed, of the same length; and the Puzzle consists in

linking these together by interposing other words, each of which shall

differ from the next word in one letter only"

Amidst the initial “edit scripts” that Lewis Carroll used to trigger the game and those

contributed by the readership one could find small pearls such as:

HEAD → Heal → Teal → Tell → Tall → TAIL

TEARS → Sears → Stars → Stare → Stale → Stile → SMILE

TREE → Free → F lee → F led → Feed → Weed → Weld → Wold → WOOD
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GRASS → Crass → Cress → Tress → Trees → Frees → Freed → Greed → GREEN

ONE → Owe → Ewe → Eye → Dye → Doe → Toe → Too → TWO

APE → Are → Ere → Err → Ear → Mar → MAN

This problem becomes clearly vacuous under standard Hamming distance [25], in

which words are not required to have a meaning. But distances defined in terms of edit

script allowing for insertion and deletion of characters in addition to the substitution

(sometimes called Levenstein distances, in an allusion to their lineage from error

correcting codes [31]) would later dominate the scene in computational molecular

biology. I am not sure that Roberto Benigni, the Oscar winning director of “Life

is Beautiful” ever knew of Lewis Caroll’s puzzle, but during a weekend gathering of

friends at Umberto Eco’s he introduced a similar variation on semantic Hamming

consisting of a riddle that found the answer into a movie title, once just one letter

was changed. For instance, the solution to the riddle: “lack of servants” (penuria di

domestici, in Italian) was Almodovar’s “Women on the brink of a nervous breakdown”,

since donne sull’orlo di una crisi di nervi could be changed into donne sull’orlo di una

crisi di servi. Also in this case, both originators and subsequent external contributors

amassed a lot of additional examples, enough material for Stefano Bartezaghi to

compile an entire book, one line at a time [15].

To a computer or information scientist it seems odd that genetic information

needs anything more than a binary alphabet at the core. Why wasn’t it expedient for

genomes to evolve on two rather than four characters? Perhaps one strong argument

against the binary alphabet is posed by repetitive DNA. It is estimated that more than

10% of the human genome is made of tandem repeats, which are two or more contiguous

occurrences of exact or approximate copies of a string. They come from relatively

little understood mutational transformations called tandem duplication. The latter are

originally exact duplications but they degenerate into approximate ones by subsequent

mutations.

It is possible to divide tandem repeats into three families, depending on location

and span. Repeats in centromeric or telomeric regions, called satellites, have spans

up to one million bases and replicas from 5 to few hundreds base pairs. The other

families are called mini and micro satellites, respectively. The first ones have replicas

of about 15 bases spanning in the hundreds to few thousands, the second have short

replicas of 2-5 bases spanning in few hundreds.

Tandem repeats are believed to influence gene regulation and act as protein bind-

ing sites, thereby affecting DNA function and expression. They are believed to be

implicated into inherited human diseases called trinucleotide repeat diseases, which

include Huntington’s disease, Friedreich’s ataxia, myotonic dystrophy, spinal and bul-

bar muscular atrophy, among others (see [16] and references therein). Although the

functional role of satellites is still not understood, they tend to be highly polymorphic,

which makes them useful as genetic markers. For all these reasons, it is of interest
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to develop efficient methods for the detection of exact and approximate repeats in

sequences.

At the beginning of last century Axel Thue posed the problem of whether or not

it would be possible to write indefinitely long sequences over some alphabet without

ever repeating the same substring twice in a row [45, 46]. It is easy to see that this

becomes quickly impossible with a binary alphabet, say, {a, b}: starting w.l.o.g. with

an a, forces to follow up with a b; now we must have an a again, lest the pair bb be

created - at this point, however, it is impossible to preserve the property, as we must

either create abab or abaa, both no longer square-free. One would conjecture that

adding one character would make the longest possible square-free string only a few

units longer. Thue proved instead that with three characters or more it is possible

to build indefinitely long strings without any square. He established his result by

providing a square-free morphism, i.e., a rewriting rule by which square-freeness is

preserved. Thue’s morphism started on abc and it consisted of the rewriting rules:

a ← acab, b ← acabcb, c ← acbcacb, but many years later Sorin Istrail [27] gave the

shortest morphism on a three character alphabet, namely: a← abc, b← bc, c← b. In

view of the above, it may be refreshing to know that squares and DNA tandem repeats

are not unavoidable regularities (or a “fact of life”, as one would be tempted to say)

and hence their appearance serves some biological significance and perhaps purpose.

Although with some exceptions (e.g., the TATA box) squares and repetitions in

genomic sequences occur mostly in approximate forms. At any rate, once it becomes

clear that exact squares are avoidable it is natural to ask how many of them a string

could pack and then how long would it take to find them.

Since there are Θ(n2) ways to pick a substring (hence, a candidate root of a

square) in a sequence, one might expect as many roots and then squares. In 1981, Max

Crochemore [21] proved that there can be at most O(n log n) squares in a string, and it

would take a particularly pathological one such as a Fibonacci word to accommodate

this number. A Fibonacci word follows the standard recurrence except concatenation

replaces addition, so as to produce the words:

F0 = b; F1 = a; F2 = F1F0 = ab; F3 = F2F1 = aba; F4 = abaab; F5 = abaababa

and so on. Algorithms have been produced ever since to find all occurrences of squares

[11, 33, 21, 24], bound and detect all distinct roots of squares, as well as all maximal

repetitions, that is, strings of maximum length in the form uku′ with u′ a prefix

of u [29], together with the companion problems of computing a table counting, for

any substring of a string, the maximum number of its non-overlapping occurrences

[12, 13, 20].

So much for mutual reverberations between biology and stringology. In the re-

mainder of this paper, I will survey a few circumstances in which problems of molecular

biology helped in solving problems in the outside world.
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2. Freakanomics and Multiple Sequence Alignment. A recent bestseller

[32] reports the intriguing story of a Chicago School that had been desperately falling

in the ranking. The teachers of that School, whose compensation depended on the

overall School performance, resorted to tampering with student examination records in

an attempt at improving performance in one of the tests uniformly administered across

the area district. Each record consisted of a string of a fixed number of alphanumeric

characters, each marking the answer to one of the consecutive questions on the test.

The scheme of the cheaters was to artificially change some of the wrong answers so as

to make them right, but they only had limited time to do that –not enough to create

personalized amended answer sheets.

In Multiple Sequence Alignment (refer to, e.g., [8]), we are given k sequences

placed each on one of k consecutive rows and asked to align them by inserting a mini-

mum number of spaces between consecutive characters in each sequence in such a way

that the cost resulting from aligning spaces of non identical characters is minimum.

There are several ways to choose the cost structure but we do not need belabor this

point here. One of the ways to get around the inherent intractability of the prob-

lem is to set up heuristic methods capable of converging within reasonable time (e.g.,

some low polynomial in the size of the input) even though of course no such method

can guarantee achieving optimality. Suppose that a sufficiently long good alignment

existed among relatively well centered substrings of the sequences. We could use this

“anchor” pattern to divide the problem in two halves of approximately the same size,

and recursively solve the latter. One might expect log k stages to suffice in the average

case, and the overall cost will depend on the cost of the anchor-seeking routine (inci-

dentally, it has been argued occasionally that anchoring based on the user’s expertise

will actually improve the solution [37]). If we make the further simplification that

the anchor must be a definite solid shared substring, then the problem reduces to the

folowing:

Input: a family of k sequences s1, s2, ..., sk of total length n;

Output: for any integer c ≤ k a longest substring shared by c of the k strings.

Solving this problem gives a handle towards exposing the fraudulent scheme of

the teachers. For, suppose that some c looks large in comparison to the length of the

shared substring. Then one can argue that such a deep uniformity among test records

could not have occurred by chance.

To solve the above problem by brute force we would have to extract substrings

one by one and check for each one how many of the sequences contain it. There are

many linear time algorithms for string searching (see, e.g., [7]), but applying any of
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them to the potentially

k
∑

j=1

|sj |
2

candidate substrings yields a prohibitive O(n3) time bound.

Remarkably, the problem has a solution that takes time proportional to

k
∑

j=1

|sj | = n

overall, i.e., including searches. The problem is known as the set color problem and

the original solution is due to Hui [26]. It is based on the following non-intuitive

property. Imagine a rooted tree with leaves variously colored (in our case, the colors

would be precisely k, each corresponding to one of the sequences). We want to find,

for each node, how many different colors are found in the subtree rooted at that node.

Of course this is different from counting how many leaves are found in each subtree.

It is noteworthy that D. Knuth had conjectured around 1972 that finding the longest

string common to two textstrings could not be solved in time better than O(n log n)

[28]. The conjecture was unusually short-lived, as a linear algorithm emerged a few

months afterwards as a byproduct of Weiner’s “repetition finder” [48].

In order to find surprising strings among the shared ones one needs to weight the

color counts against their expected number. This is done by computing scores such

as

z1(w) = c(w) − Ec(w)

z2(w) =
c(w)

Ec(w)

z3(w) =
(c(w) − Ec(w))2

Ec(w)
where Ec(w) and c(w) are, respectively, the expected and observed number of se-

quences that contain at least one occurrence of w. Given k sequences of respective

sizes ni for i ∈ [1, k], a typical estimate for Ec(w) is

Ec(w) =
k

∑

i=1

(

1− e−Ei(w)
)

where Ei(w) is the expected number of occurrences of w in the i-th sequence. An

estimator of the true expectation is calculated after Stuckle et al. [43] by assuming a

first order stationary Markov chain

Ei(w) =
fi(w[1,2])fi(w[2,3]) . . . fi(w[m−1,m])

fi(w[2])fi(w[3]) . . . fi(w[m−1])

where fi(w) is the observed number of occurences of w in the i-th sequence.
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3. Motifs, Compression and the Wheel of Fortune. In Computational

Molecular Biology and genomic studies a prominent role is played by patterns, some-

times also called motifs which include varieties of gapped strings such as those gener-

ated by some consensus or alignment. These patterns may be visualized as sequences

of characters intermixed with gaps. They may be rigid, in which case a controlled

number of gaps are admitted at predefined fixed positions, or extensible, when a se-

quence of gaps can now be stretched within prescribed bounds. Rigid motifs are thus

strings over Σ∪{◦}, where Σ is the input alphabet and “◦” is a wild card or don’t care

character matching any character from Σ. Allowing for variable length spacers in a

motif makes it extensible. Spacers may be indicated by annotating the dot characters

with the number of times it may be repeated. More specifically, an annotated “◦”

character is written as ◦α where α is a set of positive integers {α1, α2, . . . , αk} or an

interval α = [αl, αu], representing all integers between αl and αu including αl and αu.

We may also define d, the maximum number of consecutive dots allowed in a string,

and then the dash symbol “-” may be used in place of the annotated dot character,

◦[1,d] in the string, so that a string of the form a ◦[1,d] b will be simply written as

a-b. In conclusion, a motif m is extensible if it contains at least one annotated dot.

Unlike a rigid string an extensible string m may have multiple occurrences starting at

a position of a sequence x. This complicates the probabilistic analysis of extensible

motifs even for basic probabilistic models.

When looking for recurrent motifs, it seems natural to exclude from consider-

ation those that could be further specified by some extension or by changing don’t

cares into additional solid characters without sacrifice of the corresponding occurrence

count. Motifs that meet such condition have been also called maximal or saturated.

An algebraic-flavored notion stronger than maximality, called irredundancy, was in-

troduced for these motifs by L. Parida (see, e.g., [39]) and subsequently studied also

by others. The idea is that, from the roster of all saturated rigid motifs, it is possible

to extract a base of irredundant motifs with the property, that any other motif can

be inferred both in terms of its pattern structure and list of occurrence by a suitable

subset of irredundant motifs on the base. Unfortunately, the size of the base of motifs

in a sequence can be exponential in the the size of the input [38]. However, when the

minimum acceptable number of occurrences for a motif is just 2, then it is seen that

the irredundant motifs come from the consensus patterns generated by the autocorre-

lations of the input. Furthermore, the size of the base is itself linear in the input [10]

and for binary alphabets it can be actually built for an input string of n characters

in O(n2 log n) time incrementally for the entire set of suffixes of that string [14].

The departure of a pattern w from expectation is commonly measured by so-called

z-scores, which take the form

z(w) =
f(w) − E(w)

N(w)
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where f(w) > 0 represents a frequency, E(w) > 0 an expectation and N(w) > 0 is

the expected value of some function of w. For given z-score function, set of patterns

W , and real positive threshold T , patterns such that z(w) > T or z(w) < −T are

considered to be surprising.

Under i.i.d assumptions, it is seen [3, 2] that for an input sequence of length n

and a pattern w of length m ≤ (n + 1)/2 we have:

E(w) = (n−m + 1)p(w)

and

Var(w)=E(w)(1 − p(w)) − p(w)2(2n− 3m + 2)(m− 1)

+2p(w)

s
∑

l=1

(n−m + 1− dl)

m
∏

j=m−dl+1

p(w[j])

where p(w) is the probability of occurrence of w and {d1, d2, . . . , ds} are the lengths

of the periods of w. A string w has a period z if w is a prefix of zk for some integer k.

Alternatively, a string z is a period of a string w if w = zlv and v is a possibly empty

prefix of z. Truncating Var(w) after the first term yields V̂ar(w) = E(w)(1− p(w)).

For scores of this kind, it is possible [3, 2] to confine the computation to a number

of candidate surprising words which is linear in the length of the host sequence. More-

over, the set W of these candidates can be identified a priori, and their relationship

to any other, e.g., over-represented word not in W is as follows (under-represented

words obey a symmetric property). For any word w not in W such that z(w) > t,

there is a word w′ in W such that:

1. w′ = wv for some nonempty word v, i.e., the “neglected” word is embedded

in a word of W as a prefix;

2. z(w′) > z(w), i.e., w′ is at least as surprising as w.

Such a drastic limitation on the order of the number of candidates, as well as

their identification, weighing and display are all inextricably interwoven reflections of

a same combinatorial property, which has to do with the score being monotone within

certain families of patterns. This property prescribes that if, say, w and an extension

w′ = wv of w are nonempty substrings of the text x such that f(w) = f(wv), then

the score of w does not exceed that of w′. Under these conditions, w can be neglected

as the surprise it conveys is subsumed by w′.

In order to convey the intuition behind these facts, let us define a condensation of

a pattern u in some textstring x as any pattern v that may be obtained by inserting

one or more extra solid characters in u while every starting position of an occurrence

of u remains also a starting position of an occurrence of v. Then the following facts

hold for extensible motifs, hence in particular for rigid motifs and solid words [5].

Theorem 1. Let v and u be extensible motifs under the i.i.d. model and let v be

a condensation of u. Then, there is a probability p̂ ≤ 1 such that pv = pup̂.
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Theorem 2. If f(u) = f(v) > 0, N(v) < N(u), and E(v)/N(v) ≤ E(u)/N(u),

then

f(v)− E(v)

N(v)
>

f(u)− E(u)

N(u)

In the particular case of the i.i.d model this becomes

Theorem 3. Let u and v be motifs generated with respective probabilities pu and

pv = pup̂ according to an iid process. If f(u) = f(v) and pu < 1/2 then

f(v)− E(v)
√

E(v)(1 − pv)
>

f(u)− E(u)
√

E(u)(1− pu)

These facts identify the intervals of monotonicity within which z-score computa-

tion may be limited to precisely the set of saturated motifs. Then, a prudent combi-

nation of saturation conditions (expressed in terms of minimum number of don’t cares

compatible with a given list of of occurrences) and monotonicity of scores is seen to af-

ford significant parsimony in the generation and testing of candidate over-represented

rigid and extensible motifs.

The notion of saturated pattern finds a congenial habitat in data compression by

textual substitution, where patterns recurring more or less frequently are replaced by

pointers to a single common copy. In those contexts, it comes natural to impose that

the pattern chosen for encoding satisfy conditions that prevent forfeiting information

gratuitously. To begin with, once a motif is chosen it seems reasonable to exploit the

set of its occurrences to the fullest, compatibly with self-overlaps. Likewise, it seems

reasonable to exclude from consideration patterns that could be enriched in terms of

solid characters without prejudice in the corresponding set of occurrences.

Data compression methods are partitioned traditionally into lossy and lossless.

Typically, lossy compression is applied to images and more in general to signals sus-

ceptible to some degeneracy without lethal consequence. On the other hand, lossless

compression is used in situations where fidelity is of the essence, which applies to high

quality documents and perhaps most notably to textfiles. Lossy methods rest mostly

on transform techniques whereby, for instance, cuts are applied in the frequency,

rather than in the time domain of a signal. By contrast, lossless textual substitution

methods are applied to the input in native form, and exploit its redundancy in terms

of more or less repetitive segments or patterns.

When textual substitution is applied to digital documents such as fax, image or

audio signal data, one could afford some loss of information in exchange for savings

in time or space. In fact, even natural language can easily sustain some degrees of

indeterminacy where it is left for the reader to fill in the gaps. The two versions

below of the opening passage from the Book1 of the Calgary Corpus, for instance, are
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equally understandable by an average reader and yet when applied to the entire book

the first variant requires 163,837 less bytes than the second one, out of 764,772.

DESCRIPTION OF FARMER OAK – AN INCIDENT

When Farmer Oak smile., the corners .f his mouth spread till the.

were within an unimportant distance .f his ears, his eye. were reduced

to chinks, and ...erging wrinkleŮred round them, extending upon ...

countenance li.e the rays in a rudimentary sketch of the rising sun.

His Christian name was Gabriel, and on working days he was a young

man of sound judgment, easy motions, proper dress, and ...eral good

character. On Sundays, he was a man of misty views rather given to

postponing, and .ampered by his best clothes and umbrella : upon ...

whole, one who felt himself to occupy morally that ... middle space

of Laodicean neutrality which ... between the Communion people of

the parish and the drunken section, – that ... he went to church, but

yawned privately by the t.ime the cong.egation reached the Nicene

creed,- and thought of what there would be for dinner when he meant

to be listening to the sermon.

DESCRIPTION OF FARMER OAK – AN INCIDENT

When Farmer Oak smiled, the corners of his mouth spread till they

were within an unimportant distance of his ears, his eyes were re-

duced to chinks, and diverging wrinkles appeared round them, extend-

ing upon his countenance like the rays in a rudimentary sketch of the

rising sun. His Christian name was Gabriel, and on working days

he was a young man of sound judgment, easy motions, proper dress,

and general good character. On Sundays he was a man of misty

views, rather given to postponing, and hampered by his best clothes

and umbrella : upon the whole, one who felt himself to occupy morally

that vast middle space of Laodicean neutrality which lay between the

Communion people of the parish and the drunken section, – that is,

he went to church, but yawned privately by the time the congregation

reached the Nicene creed,- and thought of what there would be for

dinner when he meant to be listening to the sermon.

In practice, the development of optimal lossless textual substitution methods

is made hard by the circumstance that the majority of the schemes are NP-hard

[42]. Obviously, this situation cannot improve with lossy ones. As an approximation,

heuristic off-line methods of textual substitution can be based on greedy iterative

selection as follows (see e.g., [9, 12]). At each iteration, a substring w of the text

x is identified such that encoding a maximal set of non-overlapping instances of w
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Fig. 1. Lossy compression of “Lena” at 1/3 ′◦′/char density yields a gain of 25,33% over GZip.

Interpolation (center figure) leaves 10,13% differences from original, unnoticeable to the naked eye.

in x yields the highest possible contraction of x; this process is repeated on the

contracted textstring, until substrings capable of producing contractions can no longer

be found. This may be regarded as inferring a “straight line” grammar [22, 23, 30] by

repeatedly finding the production or rule that, upon replacing each occurrence of the

“definition” by the corresponding “nonterminal”, maximizes the reduction in size of the

current textstring representation. Implementations of such greedy off-line strategies

[9] compare favorably with other methods, particularly as applied to ensembles of

otherwise hardly compressible inputs such as biosequences (sic!). They also appear

to be the most predictable ones in terms of the achievable approximation to optimum

descriptor sizes [30].

Off-line methods are advantageous in applications such as mass production of

Cd-Roms, backup archiving, and any other scenario where extra time or parallel

implementation may warrant the additional effort imposed by the encoding.

The idea of trading some amount of errors in reconstruction in exchange for

increased compression is ingrained in Rate Distortion Theory [17, 18], and has been

recently revived in a number of papers, mostly dealing with the design and analysis

of lossy extensions of Lempel-Ziv on-line schemata.

For our lossy off-line schemata [6, 4, 5], we slightly expanded the notion of a

motif by including additional parameters related to the density of solid characters, the

maximum motif length and minimum allowed number of occurrences. Interpolation

on images was carried out by averaging from the two solid pixels adjacent to each

gap. The corresponding discrepancies from the original pixel values reach into 16%

in terms of % number of inexact pixels, but was found to be only a few percentage

points if the variation in value of those pixels was measured instead as a percentage

of the affected pixels, and entirely negligible (a fraction of a percent) when averaged

over all pixels, as displayed in the figure. These performances were impressive enough

for IBM to file for more than one patent.
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4. Markov Chains, Natural Languages and Protein Families. Proba-

bilistic models of various classes of sources are developed in the context of coding and

compression as well as in machine learning and classification. In the first domain,

the repetitive structures of substrings are regarded as redundancies and sought to be

removed. In the second, repeated subpatterns are unveiled as carriers of information

and structure. Source modeling is made hard in practice by the fact that we do not

know the source probabilities, the latter being actually rather fictitious entities or

models. In fact, one pervasive problem is that of learning or estimating these prob-

abilities from the observed strings. In summary, the problem is twofold. From an

information theoretic standpoint, the question is how to define a notion of informa-

tion relative to a class of sources. Once one such characterization is agreed upon,

interesting algorithmic questions revolve around the computational cost inherent to

the process of learning or estimating probabilities within that class.

Some popular probabilistic automata typically built in these contexts are sub-

tended by uniform, fixed-memory Markov models. In practice, such automata tend

to be unnecessarily bulky and computationally imposing both during their synthesis

and use. One of the crucial parameters for a Markov model is its memory length L.

The corresponding automaton must have one distinct state for each word of length L,

so that the number of states grows exponentially with memory, and the automaton

risks becoming rapidly bigger than the model sequence. For sequences in important

families ranging from natural language, to speech, handwriting, and molecular se-

quence analysis, the “memory” exhibited decays exponentially fast with length. In

other words, there is a maximum length L of the recent history of a sequence, above

which the empirical probability distribution of next symbol given the last L′ > L

symbols does not change appreciably. It is thus customary to model these sources

by Markov chains of order L, this maximum useful memory length. Even so, the ex-

ponential growth in size by such automata makes them rapidly unpractical. In recet

work by Ron et al [40], much more compact, tree-shaped variants of probabilistic au-

tomata (called PSTs) are built which assume an underlying Markov process of variable

memory length not exceeding some maximum L. These variants were subsequently

adapted and applied successfully to learning and prediction of protein families. The

probability distribution generated by these automata is equivalent to that of a Markov

chain of order L, but the description of the automaton itself is much more succinct.

The process of learning the automaton from a given training set S of sequences re-

quires Θ(Ln2) worst-case time, where n is the total length of the sequences in S and

L is the length of a longest substring of S to be considered for a candidate state in

the automaton. Once the automaton is built, predicting the likelihood of a query

sequence of m characters may cost time Θ(m2) in the worst case.

In recent work with G. Bejerano, we have introduced automata equivalent to PSTs

but having the desirable properties that their construction and use takes linear time.
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That is to say, in particular, that the size of the learned classifier does not exceed that

of the observation upon which it is based. The crux in the improvement resides in

speeding-up a test that asks, virtually on all substrings s of the source string, whether

there is a symbol σ ∈ Σ such that:

P̃ (σ|s)

P̃ (σ|suffix(s))
≥ r or

P̃ (σ|s)

P̃ (σ|suffix(s))
≤ 1/r,

where P̃ denotes empirical probabilities or frequencies and r ≥ 1 is a fixed parameter

value. Essentially, it is possible to set up an algorithm to answer the collection of all

those tests for all substrings of a textstring x in overall linear time and space. What

seems counterintuitive is the fact that a string of n characters may contain Θ(n2)

distinct substrings, roughly corresponding to the number of ways in which the text

can be cleaved at two different positions. As it turns out, however, substrings may be

partitioned into O(n) equivalence classes in such a way that for subwords s and s′ = sσ

in a same class the empirical conditional probabilities in the form P̃ (σ|s) must be 1

and thus there is no need to compute it explicitly. This surprising property may be

described as follows. Given two words x and y, let the start-set of y in x be the set of

occurrences of y in x, i.e., posx(y) = {i : y = xi...xj} for some i and j, 1 ≤ i ≤ j ≤ n.

Two strings y and z are equivalent on x if posx(y) = posx(z). The equivalence relation

instituted in this way is denoted by ≡x and partitions the set of all strings over Σ

into equivalence classes. In the string abaababaabaababaababa, for instance, {ab, aba}

forms one such class and so does {abaa, abaab, abaaba}. It is then possible to prove

that the number of equivalence classes is bounded by 2n. This is seen immediately

by considering the suffix tree of the text string: all words ending in the middle of

an arc are in the same class as the word ending at the closest downward branching

node. Actually, branching nodes and leaves are in one-on-one correspondence with

the classes in our equivalence relation. Since the tree has n leaves it also has n − 1

branching nodes, whence the bound. This is one of very few cases, and surely the

most elegant one I know, of a combinatorial property on words explicated by a data

structure. See [19] for a combinatorial argument as applied to the symmetric case of

the equivalence relation defined in terms of the ending positions.

5. Waka and the String Resemblance System. Since I started my brief

excursus with the discussion of a case of cheating it shall not be inappropriate to

close it with the discussion of a case of suspected plagiarism.

The stage for this is offered by Waka, a form of traditional Japanese poetry with

a 1300-year history. The structure of a poem consists of 5 lines and 31 syllables

arranged in the form: 5-7-5-7-7. The fundamental device of Waka poetry is honkadori

or poetic allusion. Honkadori consists of introducing few subtle changes in some older

poem in order to produce a new one [35]. Here below is the phonetic transliteration

of one example.
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Alluded to: Kokin-shu #315 Allusive variation shugyoku-shu #3528

(Minamoto-no-Muneyuki) (Jien)

ya-ma-sa-to-ha ya-to-sa-hi-te

fu-yu-so-sa-hi-shi-sa hi-to-me-mo-ku-sa-mo

ma-sa-ri-ke-ru ka-re-nu-re-ha

hi-to-me-mo-ku-sa-mo so-te-ni-so-no-ko-ru

ka-re-nu-to-o-mo-he-ha a-ki-no-shi-ra-tsu-yu

which is rendered in English as follows.

Alluded to: Kokin-shu #315 Allusive variation shugyoku-shu #3528

A hamlet in mountain is My home has been deserted

the drearier in winter.

I feel that there is no one to see Now in autumn, there is no one to see

and no green around And no green around

There is a pearl dew left in my sleeve

Although almost invisible to the naked eye, the transition from original to allusion

presents almost a compendium of the genomic evolution. The first two verses feature

a deletion between “ya” and ”to” (it must be by accident that those two syllables

almost sound like ”hiatus”). A similar fate affects the last verse, which is advanced to

the third position losing some syllables on account of metric constraints. There is a

transposition of the entire fourth verse of the original, moved to the second position.

And so on.

By the genesis and structure of these poems, it clearly required a lot of erudition

for sophisticated contemporaries to appreciate every new composition. But how much

of that could be made accessible to modern scholars? Perhaps computing can help.

Since honkadori holds key to the subtlest nuances of a waka poem, it is tempting to

arrange the available corpus of almost 500,000 poems in order of decreasing similarity,

based on the mutual allusions. Some unifying framework for this is represented by the

so called string resemblance system assembled by M. Takeda and co-workers [44], who

formulated several measures of similarity based on shared substrings and for the most

part originally developed in applications of protein analysis and classification. The

system is built on the premise that the similarity of two objects depends on the degree

of common structure and may be thus measured by the maximum score achieved by

shared patterns. For instance, if the discriminating patterns are words with don’t care

characters, then similarity is measured by the length of longest common subsequence.

Along these lines, one has
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Definition 1. A string resemblance system is composed by an alphabet Σ, a set

of patterns Π, a map associating a pattern to a string in Σ∗, and a score Φ assigning

a real number to a pattern.

Here Σ∗ denotes as usual the free monoid generated by the finite set Σ endowed

with the operator of concatenation. Based on this, the similarity between x and y is

sup{Φ(π)|π ∈ Π and x, y ∈ L(Π)}.

The pattern sets comprised in this definition are restricted to the form Π = (Σ ∪

{}̇)∗, but this repertoire is easily expanded in order to accommodate transpositions.

Definition 2. An order-free pattern is a multiset {u1, ..., uk} such that k > 0

and u1, ..., uk ∈ Σ+ . The language of this pattern is the union of the languages

Σ∗uσ(1)Σ
∗uσ(2)...Σ

∗uσ(k)Σ
∗ over all permutations of σ{1, ..., k}.

For example, the language of the pattern {abc, de} is Σ∗abcΣ∗de∪Σ∗deΣ∗abcΣ∗.

The membership problem for order-free patterns is NP-complete, and therefore the

similarity computation is generally impractical. However the problem is polynomial-

time solvable when k is fixed.

In [44], the authors test the similarity among poems based on three comple-

mentary measures. The first measure tries to capture the poetic allusion between

individual line pairs. Pairwise line similarity is based on the longest common subse-

quence, but then this is slightly modified by allowing some alteration in the order of

individual lines.

The other two measures assess the degree of alteration of the order of words

appearing within the same line. Of these, one measure quantifies this alteration on a

purely syntactic basis, whereas the other one incorporates the relative rarity of each

shared pattern within the corpus.

Using these measures, the authors could identify instances of poetic allusion be-

tween the Kokin-Shu and Shin-Kokin-Shu anthologies. Among several consistent find-

ings, they also found with great surprise an instance of poetic allusion that had never

before been pointed out in the long history of Waka research. This led to the discovery

that one of the most important poems by the renowned poet Fujiwara-no-Kanesuke

was in fact heavily inspired by a poem found in Kokin-Shu! And this is how some

tools of the trade of computational molecular biology ended up making waves at wide

circles in literary communities and the general public alike.
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