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THE THREE-STATE PERFECT PHYLOGENY PROBLEM REDUCES

TO 2-SAT∗

DAN GUSFIELD†
AND YUFENG WU‡

Abstract. We extend a structural result by A. Dress and M. Steel [3], to show that the three-

state Perfect Phylogeny problem reduces in polynomial time to the classic 2-SAT problem. We also

give a more expanded exposition of the proof of the structural result from [3]. We hope this note will

encourage additional researchers to try to solve the central open question: finding simple efficient

solutions to the k-state Perfect Phylogeny problem for k > 3.

1. Introduction. In the k-state Perfect Phylogeny problem, we are given an n

by m matrix M with integers from the set K = {1, 2, ..., k}. The problem arises in

phylogenetics, so we refer to each row of M as a taxon (plural taxa), to each column

of M as a character, and to each value in a column c as a state of character c. A

Perfect Phylogeny for M is an undirected tree T with n leaves, where each leaf is

labeled by a distinct taxon of M , and each internal node of T is labeled by a vector

in Km (which need not be in M), such that for every character c and every state i

the nodes labeled with state i for character c form a connected subtree, Tc(i), of T .

Clearly then, for any character c and states i 6= j, the subtrees Tc(i) and Tc(j) of T

are node disjoint. An example is shown in Figure 1. The k-state Perfect Phylogeny

Problem is to determine, for input M , if there is a k-state perfect phylogeny for M .

If none of the parameters k, n or m is fixed (so k can grow with n), then the k-

state perfect phylogeny problem is NP-complete [2, 11]. In contrast, if k is any fixed

integer, independent of n, then the problem can be solved in time that is polynomial

in n and m. In fact, for k = 2, the problem can be solved in linear time [5]. A

polynomial-time solution for k = 3 was shown in [3]; a polynomial-time solution for

k = 3 or 4 was shown in [7]; and a polynomial bound for any fixed k was shown in

[1]. The later result was improved in [8] to a time bound of O(22knm2). An excellent

survey of most of these results appears in [4].

The polynomial-time algorithm for k = 3, developed in the paper by A. Dress

and M. Steel [3] is very simple in comparison to the methods for k > 3 [7, 1, 8]1. The

work in this note comes out of an effort to find equally simple methods for k > 3, or
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A:

(1,2,3)

(3,2,3)

(1,2,3)E:

(1,1,3)D:

(2,3,2)B:

(3,2,3)C:

(3,2,1)

Fig. 1. A three-state perfect phylogeny with n = 5, m = 3. The input M consists of the five

vectors that label the leaves of the tree. The subtree T3(3) contains the leaves labeled C,D,E, and the

two interior nodes.

to find simple ways to explain that the k-state Perfect Phylogeny problem with any

fixed k can be solved in polynomial time.

In this note we show that a result developed by A. Dress and M. Steel [3] can

be extended to give a simple, efficient reduction of any instance of the 3-state perfect

phylogeny problem to an instance of the classic 2-SAT problem2 which is well-known

to be solvable in polynomial time. This reduction is a small extension of the main

result in [3], but it is valuable to explicitly state this observation for three reasons: a)

to allow the practical application of the extensive literature on the 2-SAT problem to

the 3-state perfect phylogeny problem; b) to add to the set of problems that have a

simple, efficient reduction to 2-SAT; and c) to emphasize the distinction of the 3-state

perfect phylogeny problem from the k-state problem for k > 3, where we do not know

any natural reduction to a classic problem in P . More starkly, for any fixed k, the

k-state Perfect Phylogeny problem can be reduced in polynomial time to the SAT

problem restricted to a subclass of boolean expressions for which the SAT decision

problem is in P (similar to the case of 2-SAT). This follows because the k-state Perfect

Phylogeny problem is in P for any fixed k, and the problem HORN-SAT is complete

for P , and is solved by a very simple polynomial-time algorithm. HORN-SAT is the

2The Dress-Steel paper actually shows a more general result, that of determining for any k,

whether there is a k-state perfect phylogeny T for M , where each subtree Tc(i) is a star. That

problem can also be efficiently reduced to 2-SAT, but we leave that to the reader.
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satisfiability problem where each clause in the boolean expression can have at most

one positive literal. However, even for k = 4 we do not know a simple, natural way

to reduce the k-state Perfect Phylogeny problem to the HORN-SAT problem.

A final, pedagogical contribution of this note is to provide a more expanded

exposition, but following the same logical lines, of the central argument in [3]. A

better understanding of this result may encourage additional researchers to try to solve

the central open question: finding simple efficient solutions to the Perfect Phylogeny

problem for k > 3. A wider understanding of multi-state Perfect Phylogeny is also

important because of the increasing availability of multi-state molecular marker data,

and particularly the expanding role of multi-state data in population genomics.

For other recent results on three-state perfect phylogeny, see [9], and for recent

results on more than three states, see [6].

2. The Dress-Steel solution to the 3-state Perfect Phylogeny Problem.

For this exposition, create another matrix M derived from M , with three characters

c(1), c(2), c(3), for each character c in M . Note that c is a variable. All the taxa that

have state i for c in M are given state 1 for character c(i) in M , and the other taxa

are given state 0 for c(i). So, the original input matrix M is recoded as a binary

matrix M with three expanded characters for each character in M . Two columns in

M (and their corresponding characters) are called “incompatible” if and only if the

two columns contain all four binary pairs 0,0; 0,1; 1,0; 1,1, and they are otherwise

called “compatible”. The main structural result in [3], interpreted in terms of M is:

Theorem 2.1. Given matrix M with k = 3, there is a perfect phylogeny for M , if

and only if there is a set of characters S of M which are pairwise compatible, and where

for each character c in M , S contains at least two of the characters c(1), c(2), c(3).

In [3], a polynomial-time algorithm is given to find an appropriate set S, if one ex-

its. That algorithm can be seen to be isomorphic to the classic (resolution) algorithm

that determines if a 2-SAT expression is satisfiable, and therefore suggests that there

might be an explicit reduction of the 3-state Perfect Phylogeny problem to 2-SAT.

We next give such an explicit reduction.

Reduction to 2-SAT. Given M , we form the following 2-SAT expression E(M)

containing one variable xc(i) for each character c(i) in M . For each character c in M ,

create the subformula Fc = [(xc(1) ∨ xc(2))] ∧ [(xc(1) ∨ xc(3)] ∧ [(xc(2) ∨ xc(3))], and

create the subformula F1(M) consisting of the conjunction of all of the Fc subformulas.

F1(M) contains only two literals per clause, and is satisfied if and only if at least two

of the variables xc(1), xc(2), xc(3) are set to true, for each character c.

Next, for every incompatible pair of characters c(i), c′(j) in M , where c and c′

are different characters in M and i and j are each in {1, 2, 3}, create the clause

[¬xc(i)∨¬xc′(j)], and create the sub formula F2(M) consisting of the conjunction of all

these clauses. Subformula F2(M) contains only two literals per clause, and is satisfied
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if and only if no pair of variables that correspond to a pair of incompatible characters

in M , are both set true. Finally, create the 2-SAT expression E(M) = F1(M)∧F2(M).

Clearly, if there is a set of characters S satisfying the requirements in Theorem

2.1, then by giving each variable corresponding to a character in S a value of “true”,

expression E(M) is satisfied. Conversely, if E(M) is satisfied, then by selecting S to

be the set of characters of M whose corresponding variables are set true, then the set

S satisfies the requirements of Theorem 2.1.

Note that if E(M) is satisfied by an assignment that sets all three of the variables

xc(1), xc(2), xc(3) true, for some character c in M , then any one of those three variables

can be reset to false while still satisfying E(M). Therefore, we can sharpen Theorem

2.1 as follows:

Theorem 2.2. Given matrix M with k = 3, there is a perfect phylogeny for M , if

and only if there is a set of characters S of M which are pairwise compatible, and where

for each character c in M , S contains exactly two of the characters c(1), c(2), c(3).

2.1. An expanded exposition of the proof of Theorem 2.1. For pedagog-

ical purposes, in this section we give an expanded exposition of the proof of Theorem

2.1 in [3]. The exposition is expanded, but the proof follows the same logical lines as

in [3].

Facts about splits. A bipartition (X, X) of a set Z is called a “split”. Two splits

(X, X), (Y, Y ) are called “incompatible” if and only if all of the sets X ∩Y, X ∩Y, X ∩

Y , X ∩ Y are nonempty, and are otherwise called “compatible”. When Z is the set

of taxa in M , these definitions are consistent with the definitions given earlier for

compatible and incompatible characters in M . Also, the removal of an edge e from a

perfect phylogeny T splits T into two connected components, creating a bipartition

of the leaves of T , and hence defines a split of the taxa, called the “split defined by

e”. For any character c in M , we use Xc(i) to denote the set of taxa which have state

i for character c. Hence, Xc(i) is also the set of taxa which has state 1 in the column

associated with c(i) in M .

The most fundamental fact about leaf-labeled trees is the Splits Equivalent The-

orem [10]: Given a set of splits F , defined on a set Z of size n, there is an undirected

tree T with n leaves where each leaf is labeled with a distinct element of Z, and where

T contains edges that define the set of splits F (possibly with other edges), if and

only if every pair of splits in F is compatible. As an immediate corollary, if e and e′

are two edges in a tree T , then the two splits defined by e and e′ must be compatible.

We can now prove Theorem 2.1.

Proof of Theorem 2.1. Suppose there is a 3-state perfect-phylogeny T for M . For

any character c of M , the subtrees Tc(1), Tc(2) and Tc(3) are node disjoint and contain

all the nodes of T . Now for each character c, contract, in T , all of the nodes of Tc(i)

to a single node. The resulting graph must be a path Pc with three nodes; we label
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each node v in Pc with the distinct state (1, 2, or 3) of the nodes that contract to v.

For example, in the perfect-phylogeny T shown in Figure 1, if we contract each of the

subtrees T3(1), T3(2), T3(3) to a single node, we get a path P3 labeled with end nodes

1 and 2 and with interior node labeled 3.

In general, we use i and j to denote the state-labels of the two nodes at the

leaves of Pc. Since Pc is a path with two edges, there is an edge e in Pc the node

labeled i from the interior node and the node labeled j. Edge e is an uncontracted

edge from T , and so edge e separates all the taxa with state i for character c from

all the taxa with the other two states, and hence defines a bipartition of the taxa

and the split (Xc(i), Xc(i)). Similarly, there is also an edge in T that defines the

split (Xc(j), Xc(j)). Then, for character c, select characters c(i) and c(j) to be in

S. Repeating this for each character c of M selects a set S of characters of M that

contains exactly two expanded characters for each character c in M . Further, since

each selected split is defined by an edge in T , and every pair of splits defined by edges

in T are compatible, the characters in S are pairwise compatible and the necessary

direction of Theorem 2.1 is proved.

Conversely, suppose there is a set of characters S in M satisfying the conditions

of Theorem 2.1. Let Z denote the set of taxa in M . By construction, each character

in M defines a split of the taxa Z in M , and so S defines a set of pairwise-compatible

splits of the taxa. For a taxon s in M , the “trivial split” for s is the bipartition

{s,Z − s}, which is clearly compatible with any other split. We augment the splits

defined by S with these n trivial splits, and call the resulting set of splits S′. By the

Splits-Equivalent Theorem there is some tree T ′ with n leaves, each labeled with a

distinct taxon in Z, and containing edges that define the splits in S′. We can assume

that each edge in T ′ actually defines one of the splits in S′, by contracting any edge

that does not define such a split. Also, we can assume that no internal node of T ′

has degree two, since otherwise two neighboring edges define the same split, in which

case one edge can be contracted. We now show how to map the taxa to leaves of T

and how to label the interior nodes in T ′ so that T becomes a perfect phylogeny for

M .

Because of the trivial splits in S′, each taxon in Z labels a leaf of T ′, satisfying

one requirement for a perfect-phylogeny for M . We next need to show how to label

the interior nodes of T ′ so that for every character c and every state i for c, T ′
c
(i) is a

connected subtree of T ′. For a character c in M , suppose, without loss of generality,

that characters c(1) and c(2) are in S′, and let e(1) and e(2) be the edges in T ′

that define the splits (Xc(1), Xc(1)), and (Xc(2), Xc(2)). Removal of e(1) from T ′

creates two connected subtrees, one which contains all and only the taxa in Xc(1)

labeling its leaves. Label each of the nodes in that subtree with state 1 for character

c, defining subtree T ′
c
(1). Define T ′′ as the tree T ′ after the removal of all nodes and

edges in T ′
c
(1). Clearly, T ′′ contains all the leaves labeled by taxa in Xc(2). T ′′ also
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contains edge e(2); otherwise e(2) would be an edge in T ′
c
(1) and since all interior

nodes have degree three or more, there would be a leaf labeled 1 on both sides of e(2),

contradicting the assumption that e(2) defines the split (Xc(2), Xc(2)). So, removal

of e(2) from T ′′ defines two connected subtrees of T ′, one which contains all and only

the taxa in Xc(2); label the nodes of that subtree with state 2 for character c, defining

T ′
c(2). Removing T ′

c(2) from T ′′ leaves a connected subtree of T ′ that must contain

all and only the leaves labeled by taxa in Xc(3). Label the nodes in that subtree with

state 3 for character c, creating T ′
c(3). These three subtrees are node disjoint and

show that character c obeys the convexity requirement. Since the argument holds for

any c, we conclude that T ′ (with interior nodes labeled as above) is a 3-state perfect

phylogeny for M .

3. Open Problem. The main open problem is to find a simple, polynomial-

time reduction of the k-state Perfect Phylogeny problem, for any fixed k (or even for

k = 4) to a classic problem in P . That would provide, in contrast to the algorithms in

[1, 8], a simple demonstration that the k-state Perfect Phylogeny problem, for fixed

k, is in P . This goal seems plausible since, as stated in the introduction, for any fixed

k, the k-state Perfect Phylogeny problem can be reduced in polynomial-time to the

HORN-SAT problem (which is in P and can be solved with a very simple algorithm),

but the reduction is not “simple” or “natural”. There is also a simple, polynomial-

time reduction of the k-state Perfect Phylogeny problem for any fixed k, to the SAT

problem where the boolean expressions only contain Horn-clauses and clauses with at

most two literals. However, that reduction does not seem helpful because any instance

of SAT can also be reduced in polynomial time to such a form of SAT, and hence no

polynomial-time algorithm is expected that can solve all SAT problems of this form.
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