
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2010 International Press
Vol. 10, No. 1, pp. 53-68, 2010 004

A MOTION PLANNING APPROACH TO STUDYING MOLECULAR

MOTIONS∗

LYDIA TAPIA† , SHAWNA THOMAS†, AND NANCY M. AMATO†

Abstract. While structurally very different, protein and RNA molecules share an important

attribute. The motions they undergo are strongly related to the function they perform. For example,

many diseases such as Mad Cow disease or Alzheimer’s disease are associated with protein misfolding

and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA

folding kinetics can regulate gene expression at the translational level. Knowledge of the stability,

folding, kinetics and detailed mechanics of the folding process may help provide insight into how

proteins and RNAs fold. In this paper, we present an overview of our work with a computational

method we have adapted from robotic motion planning to study molecular motions. We have val-

idated against experimental data and have demonstrated that our method can capture biological

results such as stochastic folding pathways, population kinetics of various conformations, and rela-

tive folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a

global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy land-

scapes of both proteins and RNAs. We have validated these techniques by showing that we observe

the same relative folding rates as shown in experiments for structurally similar protein molecules

that exhibit different folding behaviors. Our analysis has also been able to predict the same relative

gene expression rate for wild-type MS2 phage RNA and three of its mutants.

1. Introduction. Molecular motions play an essential role in many biochem-

ical processes. For example, as proteins fold to their native, functional state, they

sometimes undergo critical conformational changes that affect their functionality, e.g.,

diseases such as Mad Cow disease or Alzheimer’s disease are associated with protein

misfolding and aggregation [11]. Knowledge of the stability, folding, kinetics and de-

tailed mechanics of the folding process may help provide insight into how and why the

protein misfolds. In addition, it has recently been found that some RNA functions

are determined not just by the sequence and the resulting native state but also by the

folding process itself, e.g., RNA folding velocity may regulate the plasmid copy num-

ber [21, 33] or RNA folding kinetics can regulate gene expression at the translational

level [40].

Since it is difficult to experimentally observe molecular motions, computational

methods for studying such issues are essential. Traditional computational approaches

for generating folding trajectories such as molecular dynamics (MD) [38, 22, 15, 18]

and Monte Carlo simulation [14, 34] are so expensive that they can only be applied to

relatively small structures (e.g., proteins with fewer than 130 amino acids [69]) even

when they use massive computational resources, such as tens of thousands of PCs in

the Folding@Home project [35, 48] or large supercomputers [69]. Statistical mechani-
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cal models have been applied to compute statistics related to the energy landscape for

protein [44, 1, 43, 41, 16] and RNA [9, 8, 68] molecules. While computationally more

efficient than molecular dynamics or Monte Carlo simulation, these methods do not

produce individual pathway trajectories and are limited to studying global averages

of the energy landscape and kinetics.

In this paper, we present an overview of a novel computational method for study-

ing molecular motions that we have developed and validated against experimental

data in preliminary work [3, 2, 4, 51, 53, 56, 57, 58, 59, 60, 63, 64]. Our strategy

represents a trade-off between methods such as molecular dynamics and Monte Carlo

simulations that provide detailed individual folding trajectories and techniques such

as statistical mechanical methods that provide global landscape statistics. Our ap-

proach, derived from probabilistic roadmap methods (PRMs) [30] originally developed

for robotic motion planning, builds a graph corresponding to an approximate map

of the molecule’s energy landscape that encodes many (typically thousands) folding

pathways. Although the individual pathways produced are not as detailed as trajec-

tories generated from a molecular dynamics simulation, we have shown that they can

be used to study landscape and pathway properties such as secondary structure for-

mation order. We were even able to observe subtle folding differences between protein

G and its mutants, NuG1 and NuG2 [64], an important ‘benchmark’ set developed by

the Baker Lab [45]. In recent work, we developed new tools to study folding kinetics,

such as the rate at which folding occurs or the time evolution of the population of

particular interesting states. We validated these techniques by showing that we ob-

serve the same relative folding rates as shown in experiments for some small protein

[60] and RNA [58, 59] molecules, and that our analysis predicts the same relative gene

expression rate for wild-type MS2 phage RNA and three of its mutants [58, 59].

2. PRMs for Molecular Motion – Method Overview. Our approach, de-

rived from probabilistic roadmap methods (PRMs) [30] originally developed for robotic

motion planning, builds a graph corresponding to an approximate map of the molecu-

le’s energy landscape that encodes many (typically thousands of) folding pathways,

see Figure 1. Our prm-based method follows the general prm paradigm: first con-

formations (graph vertices or map nodes) are sampled from the molecule’s energy

landscape (Figure 1(b)), and then transitions between ‘nearby’ conformations are

encoded as graph or map edges (Figure 1(c)). As in nature, our strategy favors low

energy conformations and transitions. In particular, during the sampling phase, lower

energy samples have a higher retention probability, and during the node connection

phase, each connection is assigned a weight to reflect its energetic feasibility. The en-

ergetic feasibility of a transition is determined by the energies of all the intermediate

conformations along the transition. Thus, shortest paths in the map correspond to

the most energetically feasible paths in the map, and these maps encode thousands
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of feasible pathways.

(a) (b) (c)

Fig. 1. (a) The energy landscape is the set of all conformations and their associated energy.

Building an approximate map of the energy landscape consists of two steps: (b) conformation sam-

pling and (c) connecting samples together with feasible transitions.

prm-based approaches have been applied to several molecular domains. Singh,

Latombe, and Brutlag first applied prms to protein/ligand binding [49]. In subsequent

work, our group applied another prm variant to this problem [7]. Our group was the

first to apply prms to model protein folding pathways [4, 3, 53, 52, 50, 62, 61, 64, 60]

and RNA folding kinetics [57, 58, 59, 55]. Subsequent to our work, a number of groups

have used prms to study proteins. The work of Apaydin et al. [6, 5] is similarly

motivated but differs from ours in several aspects. First, they model the protein at

a much coarser level, considering all secondary structure elements in the native state

to be already formed and rigid. Second, while our focus is on studying the transition

process, their focus has been to compare the prm approach with other computational

methods such as Monte Carlo simulation. More recently, Cortes and Simeon used a

prm-based approach to model long loops in proteins [13, 12], and Chiang et al. [10]

applied prms to calculate quantities related to protein folding kinetics such as Pfold

and Φ-value analysis.

Map Analysis Tools for Folding Kinetics. Maps provide an approximate

model of the molecule’s energy landscape. With this model, we can use map-based

analysis tools to study important kinetic measures such as folding rates, equilibrium

distributions, population kinetics, transition states, and reaction coordinates. In re-

cent work [57, 60, 58, 59], we developed two such techniques: Map-based Master

Equation solution (MME) and Map-based Monte Carlo simulation (MMC). These

tools are inspired by existing kinetics tools (namely, traditional master equation for-

malism and standard Monte Carlo simulation) but can be applied to much larger

molecules because they work on approximate landscape models instead of the com-

plete, detailed energy landscape.

Map-based Master Equation (MME). The traditional master equation calculation

gives insight into the folding rate, the equilibrium distribution, population kinetics,

and transition states [29, 66]. In master equation formalism, the stochastic folding
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process is represented as a differential equation describing the probability of the folding

process to be in a given state:

(1) dp(t)/dt = Mp(t)

where p(t) is the probability of the folding to be in a given state at time t and M

is a matrix of transition-rate constants. The solution to the master equation is a

set of eigenvectors and eigenvalues for the matrix M. The spectrum of eigenvalues is

composed of n modes where n is the number of conformations in our map. If sorted

by magnitude in ascending order, the eigenvalues include the zero-valued equilibrium

Boltzmann distribution and several small magnitude eigenvalues. The small, non-zero

eigenvalues correspond to the eigenvectors that influence the global folding rate while

large magnitude eigenvalues correspond to fast folding modes, i.e., those that fold in

a burst and die away quickly.

Master equation formalism requires a detailed model of the energy landscape.

This has been typically done by enumerating energy landscapes — feasible only for

small molecular models or segments. Instead, we apply the master equation formalism

to our maps (MME) by assigning each node in our map to a row (and column) in the

matrix M . The transition rate kij is computed from the weight wij of the edge from i

to j as k0e
−wij where k0 is a constant coefficient adjusted according to experimental

results.

A key advantage of MME over the traditional master equation solution is that

the cost of MME is proportional to the map size (i.e., the size of the landscape model)

[60], whereas the traditional master equation is usually applied to a fully enumerated

landscape.

Map-based Monte Carlo (MMC). Folding is a stochastic process [29]. In our early

work [4, 3, 53, 50, 61, 57, 64], we simply extracted smallest weight paths from the

map to study folding. However, this does not mirror the stochastic folding process.

In recent work [60, 58, 59], we developed MMC to extract paths randomly based on

transition probabilities. Similar to traditional Monte Carlo simulation, our method

starts from a random node in the map and iteratively chooses a next node based on

the transition probabilities. Just as in MME, the transition probability kij to transit

from node i to node j is computed from the edge weight wij as k0e
−wij where k0 is

a constant adjusted according to experimental results.

The standard Monte Carlo method [29, 46] simulates this random walk in the real

(or complete) energy landscape. These simulations can be computationally intensive

since at each step they must calculate the local energy landscape to choose the next

step. Instead, we apply Monte Carlo simulation directly to our maps. Thus, we are

able to work on larger molecules with our approximated landscape model at only

a small computational cost. Previously, the size of the energy landscape limited

Monte Carlo simulations to small molecules (e.g., all-atom 56 residue protein [47])
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or molecules whose kinetics were restricted in some way (e.g., Higgs performed a

Monte-Carlo simulation on a 135 residue RNA using only stem-based conformations

[23]).

An important feature of MMC is its computational efficiency in both time and

memory usage. For instance, we have shown that the cost of MMC is proportional to

the map size and model complexity [59]. For 53 to 86 residue proteins, this translates

into 23 to 36 minutes of computation on a 2.4 GHz desktop PC with 512 MB RAM [60].

Correspondingly, the memory usage is also reduced. For example, on a 18 nucleotide

hairpin RNA, 485MB of memory is required to store 1000 traditional Monte Carlo

RNA pathways produced from the program Kinfold [19]. On the other hand, 1000

MMC pathways are stored in a file of just 61MB and a map of 684KB [59].

3. Protein Motions. We have successfully applied our prm framework for

molecular motions to study protein folding and motion [4, 3, 53, 50, 52, 62, 61, 64, 60].

Here we first describe the specifics of our protein application (e.g., protein model, en-

ergy functions, map construction details) and then provide results.

3.1. Method Details. Protein Model and Energy Function. We model

the protein as an articulated linkage. Using a standard modeling assumption for

proteins that bond angles and bond lengths are fixed [54], the only degrees of freedom

(dof) in our model are the backbone’s phi and psi torsional angles which are modeled

as revolute joints with values [0, 2π).

We have used both a coarse energy function similar to [38] and an all atom energy

model [36]. For the coarse model, we use a step function approximation of the van der

Waals component and model all side chains as equal radii spheres with zero dof. If

two spheres are too close (e.g., their centers are < 2.4Å during sampling and < 1.0Å

during connection), a very high potential is returned. Otherwise, the potential is:

(2) Utot =
∑

restraints

Kd{[(di − d0)
2 + d2

c ]
1/2 − dc} + Ehp

where Kd is 100 kJ/mol and d0 = dc = 2Å as in [38]. The first term represents

constraints favoring known secondary structure through main-chain hydrogen bonds

and disulphide bonds, and the second term is the hydrophobic effect. The hydrophobic

effect (Ehp) is computed as follows: if two hydrophobic residues are within 6Å of each

other, then the potential is decreased by 20 kJ/mol. A detailed description of our

potential can be found in [4].

Biased Sampling. As previously discussed, samples are retained based on their

energy. In our protein work, a sample q, with potential energy Eq, is accepted with

probability:

Prob(accept q) =











1 if Eq < Emin
Emax−Eq

Emax−Emin
if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(3)
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where Emin is the potential energy of the open chain and Emax is 2Emin.

The map produced by our technique is an approximation of the protein’s en-

ergy landscape. The quality of the approximation depends on the sampling strategy.

Generally, we are most interested in regions ‘near’ the native state and so seek to

concentrate sampling there. In our original work [4, 3, 53, 50], we obtained a denser

distribution of samples near the native state through an iterative sampling process

where we apply small Gaussian perturbations to existing conformations, beginning

with the native state. This approach works fairly well, but still requires many sam-

ples (e.g., 10,000) for relatively small proteins (e.g., 60–100 residues). In [64], we used

rigidity analysis [26, 27, 28, 25, 37] to determine which portions of the protein to

perturb. This approach increased the protein size we can handle.

Connection. For each node in the map, we attempt to connect it with its k

nearest neighbors with a straight-line in the protein’s energy landscape. The weight

for the edge (q1, q2) is a function of the intermediate conformations along the edge

{q1 = c0, c1, . . . , cn−1, cn = q2}, where the number of intermediate conformations

depends on the resolution, which is a parameter of the method. For each pair of

consecutive conformations ci and ci+1, the probability Pi of transitioning from ci to

ci+1 depends on the difference in their potential energies ∆Ei = E(ci+1) − E(ci):

Pi =

{

e
−∆Ei

kT if ∆Ei > 0

1 if ∆Ei ≤ 0
(4)

This keeps the detailed balance between two adjacent states, and enables the weight

of an edge to be computed by summing the negative logarithms of the probabilities

for consecutive pairs of conformations in the sequence. (Negative logs are used since

each 0 ≤ Pi ≤ 1.) A similar weight function, with different probabilities, was used in

[49].

MMC Transition Probability. We apply MMC to protein folding as described

previously and set the transition probabilities as follows. We cluster the edge weights

into disjoint buckets. Bucket probabilities (Qij) are assigned in a biased Gaussian

fashion that favors clear discrimination of low edge weights, yet reflects the relative

differences between edges of all weights. The transition probability between two states,

kij , is calculated as

kij =







Qij

1+
∑ n−1

j=0 Qij

if j 6= i

1
1+

∑ n−1
j=0 Qij

if j = i
(5)

where n is the number of outgoing edges from node i. This ensures the sum of all

probabilities (including the self-transition probability) out of node i is 1.

3.2. Results. Here we present results that have validated our technique against

experimental data by comparing secondary structure formation order along folding

pathways, relative folding rates, and population kinetics for several small proteins.
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Secondary Structure Formation Order Validation. Proteins are composed

of secondary structure elements (i.e., α-helices and β-sheets). Experimental methods,

such as hydrogen exchange mass spectrometry and pulse labeling, can investigate

protein folding by identifying which parts of the structure are most exposed or most

protected [65]. From this data, one can infer the secondary structure formation order.

In [3, 50, 53] we compared the secondary structure formation order of folding pathways

extracted from our maps to experimental results [39]. We cluster paths together if

they have the same secondary structure formation order. We then define the dominant

formation order as the formation order of the largest path cluster. Our results are

in good agreement with known experimental results for many small proteins (e.g.,

60–100 amino acids) [64].

Case Study of Proteins G, L, and Two Mutants of Protein G. Proteins

G, L, and mutants of protein G, NuG1 and NuG2 [45], present a good test case for our

technique because they are known to fold differently despite having similar structure

(see Figure 2). All proteins are composed of a central α-helix and a 4-stranded β-

sheet: β strands 1 and 2 form the N-terminal hairpin (β1-2) and β strands 3 and 4

form the C-terminal hairpin (β3-4). Native state out-exchange experiments and pulse

labeling/competition experiments for proteins G and L indicate that β1-2 forms first

in protein L, and β3-4 forms first in protein G [39]. This is consistent with Φ-value

analysis on G [42] and L [31]. In Nauli et al. [45], protein G is mutated to increase

the stability of β1-2. Φ-value analysis indicates that the hairpin formation order for

both NuG1 and NuG2 is switched from the wild-type. Nauli et al. also show that

NuG1 and NuG2 fold 100 times faster than protein G.

Our initial iterative Gaussian sampling strategy was able to accurately capture

the folding differences between protein G and L, but not between protein G and NuG1

or NuG2 [53]. Our iterative rigidity-based sampling strategy, however, was able to

also capture the correct folding behavior of NuG1 and NuG2 [64], see Table 1.

In addition to detecting the correct folding behavior, our rigidity-based technique

also helped explain the stability shift in NuG1 and NuG2. Figure 2 displays the

rigidity maps of each protein’s native state. A rigidity map is a graphical view of the

rigid and flexible portions of the structure. Black regions correspond to rigid regions

and green regions correspond to slightly flexible regions. In all four proteins, the

central α helix remains completely rigid, and we also see increased rigidity in β1-2

from protein G to NuG1 and NuG2 as suggested in [45].

Finally, we have used MME and MMC to compute the relative folding rates

between protein G, NuG1, and NuG2 from our maps [60]. Figure 3(a) shows the

magnitudes of the 5 smallest eigenvalues for each protein as calculated by MME.

Recall that the smallest non-zero eigenvalues represent the rate-limiting barrier in the

folding process. Therefore, they have the largest impact on the global folding rate. As

seen in the magnitude of the second eigenvalue in Figure 3(a), protein G folds much
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(a) (b)

(c) (d)

Fig. 2. Ribbons diagrams and rigidity maps of the native state for protein G (a), protein

L (b), and mutants NuG1 (c) and NuG2 (d). Mutated portions are displayed in wireframe. In

the rigidity maps, rigid clusters are black and dependent hinge sets are shaded/green. Figure

originally published in [64].

slower than the two mutants, NuG1 and NuG2. Also, NuG1 and NuG2 fold at very

similar rates. This trend is also seen in the curves of the MMC population kinetics for

protein G (Figure 3(b)) and mutants, NuG1 (Figure 3(b)) and NuG2 (Figure 3(c)).

Both of these computational results match what has been seen in lab experiments

[45].

4. RNA Motion. In our previous work [57, 55, 58, 59], we developed several

successful map construction techniques for RNA. In particular, the Probabilistic Boltz-

mann Sampling (PBS) method builds the smallest maps (up to 10 orders of magnitude

smaller than completely enumerated maps) and enables us to study much larger RNA,

up to 200 nucleotides. Similarly with proteins, we provide several map-based analysis

tools including a Map-based Master Equation (MME) and Map-based Monte Carlo

(MMC) simulation to extract folding kinetics.

4.1. Method Details. RNA Model and Energy Function. In the results

demonstrated here, we focus on the formation of secondary structure. Secondary

structure is a planar representation of an RNA conformation, which is commonly used

to study RNA folding [70, 71, 24]. We adopt the definition in [24] that eliminates other

types of contacts that are not physically favored. We use a common energy function
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Table 1

Comparison of secondary structure formation orders for proteins G, L, NuG1, and NuG2

with known experimental results: 1hydrogen out-exchange experiments [39], 2pulsed label-

ing/competition experiments [39], and 3Φ-value analysis [45]. Brackets indicate no clear

order. In all cases, our technique predicted the secondary structure formation order seen in

experiment. Only formation orders greater than 1% are shown.

Protein Experimental Formation Order Rigidity Formation Order %

G [α,β1,β3,β4], β21 [α,β4], [β1,β2,β3]2 α, β3-4, β1-2 99.4

L [α,β1,β2,β4], β31 [α,β1], [β2,β3,β4]2 β1-2, α, β3-4 100.0

NuG1 β1-2, β3-43 α, β1-2, β3-4 97.6

β1-2, α, β3-4 1.6

NuG2 β1-2, β3-43 α, β1-2, β3-4 96.6

β1-2, α, β3-4 1.1

β3-4, β1-2, α 1.1
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Fig. 3. Population kinetics for protein G and mutants NuG1 and NuG2. NuG1 and

NuG2 are experimentally known to fold 100 times faster than protein G [45]. (a) MME

eigenvalue comparison. (b-d) MMC kinetics for protein G (b), NuG1 (c), and NuG2 (d).

Figure originally published in [60].

called the Turner or nearest neighbor rules [70].

Biased Sampling. Our sampling method, Probabilistic Boltzmann Sampling

(PBS), uses Wuchty’s method [67] to enumerate suboptimal (low energy) conforma-

tions within a given energy threshold. We take these suboptimal conformations as
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“seeds” and include additional random conformations. Then, we use a probabilistic

filter to retain a subset of the conformations based on their Boltzmann distribution

factors. For a given conformation q with free energy Eq, the probability of keeping it

is:

Prob(accept q) =

{

e
−(Eq−E0)

kT if (Eq − E0) > 0

1 if (Eq − E0) ≤ 0
(6)

where E0 is a reference energy threshold that we can use to control the number of

samples kept.

Connection. Similar to Section 3.1, we calculate a weight wij for edge (qi, qj)

that reflects the Boltzmann transition probability between qi and qj . First, we deter-

mine the energy barrier (the maximum energetic cost) Eb between qi and qj . Then,

we calculate the Boltzmann transition probability kij (or transition rate) of moving

from qi to qj using Metropolis rules [17]:

kij =

{

e
−∆E

kT if ∆E > 0

1 if ∆E ≤ 0
(7)

where ∆E = max(Eb, Ej)−Ei, k is the Boltzmann constant, and T is the temperature.

Note that the same energy barrier Eb is also used to estimate the transition probability

kji, so the calculation satisfies the detailed balance. As in protein folding, the edge

weight wij is the negative logarithm of the transition probability.

MMC Transition Probability. We apply MMC to RNA folding as described in

Section 2. Because the edge weight wij encodes the transition probability kij between

two endpoints i and j, we can calculate kij as k0e
−wij where k0 is a constant adjusted

according to experimental results. Results presented here are generated using a fast

variant of the standard Monte Carlo method [46]. Full technical details are available

in previous work [58, 59].

4.2. Results. Here we demonstrate results for several different RNA. We have

validated our technique against other computational methods and have shown that

we can capture the same folding kinetics as seen in experiment.

Computational Validation: 1k2g. 1k2g (CAGACUUCGGUCGCAGAGAU-

GG) is a 22 nucleotide RNA with a hairpin native state [32]. Figure 4(a–e) compares

the population kinetics of the native state using (a) standard Monte Carlo simulation

(implemented by Kinfold [19]), (b) Map-based Monte Carlo simulation on a fully

enumerated map (12,137 conformations), (c) Map-based Monte Carlo simulation on a

map with our PBS sampling method (42 conformations), and (d) the master equation

on a PBS map (42 conformations). While the fully enumerated map (b) is the most

accurate model, it is not feasible to enumerate RNA with more than 40 nucleotides

and numerical limitations in computing the eigenvalues and eigenvectors limit the

master equation to small maps (e.g., up to 10,000 conformations). The population
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kinetics curves all have similar features: the population first increases quickly, then

gradually decreases, and eventually stabilizes at the equilibrium (final) distribution,

which are all roughly 80%. Hence, these analysis methods all yield similar results and

indicate that the PBS map (c,d) effectively approximates the energy landscape with

less than 0.4% of all possible conformations.
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Fig. 4. The population kinetics of the native state of 1k2g (a-e): (a) Kinfold Monte Carlo

simulation, (b) our MMC simulation on a fully enumerated map (12,137 conformations), (c)

our MMC simulation on a PBS map (42 conformations), and (d) master equation solution

on the PBS map (42 conformations). All analysis techniques produce similar population

kinetics curves and similar equilibrium distributions. (e) Comparison of the eigenvalues of

1k2g by the master equation on a fully enumerated map (12,137 conformations) and new

PBS map (42 conformations). Both eigenvalues are similar between the different maps. (f)

Comparison of the 10 smallest non-zero eigenvalues (i.e., the folding rates) for WT and

MM7 of ColE1 RNAII as computed by the master equation. The overall folding rate of WT

is faster than MM7 matching experimental data. Figure originally published in [59].

Experimental Validation: ColE1 and Mutant MM7. ColE1 RNAII regu-

lates the replication of E. coli ColE1 plasmids through its folding kinetics [21, 33]. The

slower it folds, the higher the plasmid replication rate. A specific mutant, MM7, dif-

fers from the wild-type (WT) by a single nucleotide out of the 200 nucleotide sequence.

This mutation causes it to fold slower while maintaining the same thermodynamics of

the native state. Thus, the overall plasmid replication rate increases in the presence

of MM7 over the WT. We studied this difference computationally by computing the

folding rates of both WT and MM7 using MME and comparing their eigenvalues (the

smallest non-zero eigenvalue corresponds to the folding rate). As seen in Figure 4(f),

all eigenvalues of WT are larger than MM7 indicating that WT folds faster. Thus,

our method correctly estimated the functional level of the new mutant.
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Experimental Validation: MS2 Phage RNA Mutants. MS2 phage RNA

(135 nucleotides) regulates the expression rate of phage MS2 maturation protein [20,

33] at the translational level. It works as a regulator only when a specific subsequence

(the SD sequence) is open (i.e., does not form base-pair contacts). Since this SD

sequence is closed in the native state, the RNA can only regulate the expression

rate before the folding process finishes. Thus, its function is based on its folding

kinetics and not the final native structure. Three mutants have been studied that

have similar thermodynamic properties as the wild-type (WT) but have different

kinetics and therefore different gene expression rates. Experimental results indicate

that mutant CC3435AA has the highest gene expression rate, WT and mutant U32C

are similar, and mutant SA has the lowest rate [20, 33].

We estimate the gene expression rate by integrating the opening probability of

the SD sequence over the entire folding process. Note that the RNA regulates gene

expression only when the SD opening probability is “high enough”. We used thresh-

olds ranging from 0.2 to 0.6 to estimate the gene expression rate. Thresholds higher

than 0.6 will yield zero opening probability for WT and most mutants and thus can-

not be correlated to experimental results. Similarly, we do not consider thresholds

lower than 0.2, because otherwise mutant SA would be active even in the equilib-

rium condition which does not correspond to experimental results. Table 2 shows our

simulation results. For most thresholds, mutant CC3435AA has the highest rate and

mutant SA has the lowest rate, the same relative functional rate as seen in experi-

ment. In addition, WT and mutant U32C have similar levels (particularly between

0.4-0.6), again correlating with experimental results. These results also suggest that

the SD sequence may only be active for gene regulation when more than 40% of its

nucleotides are open.

Table 2

Comparison of expression rates between WT and three mutants of MS2. It shows that

we can predict similar relative functional rates as seen in experiment.

Experimental Expression Rate Our Estimation

Mutant (order of magnitude) t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6

SA 0.1 0.1 0.04 0.03 0.03 0.08

WT 1 1.0 1.0 1.0 1.0 1.0

U32C 1 2.1 1.8 1.4 0.8 1.2

CC3435AA 5 7.2 8.4 3.8 3.5 9.8

5. Conclusion. We have presented an overview of a computational technique

based on algorithms for robot motion planning that can study both protein and RNA

motion. Our technique builds an approximate map, or model, of the molecule’s energy

landscape. With this model, we have extracted folding pathways and study landscape

properties including relative folding rates and population kinetics. We have validated

our technique by comparing it to other computational methods and to experimental
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data. We have shown that our method produces pathways with the same secondary

structure formation order as seen in experiment for several small proteins, including

the structurally similar ‘benchmark’ set of proteins G, L, and mutants of G. Our

technique also has reported the same relative folding rates for protein G and its

mutants. For RNA, we have compared the population kinetics from our technique

against another popular computational method. We also have shown that we predict

the same relative folding rates for ColE1 and its mutant and the same relative gene

expression rates for MS2 phage RNA and its mutants as seen in experiment.

Acknowledgments. This research supported in part by NSF Grants EIA-01037-

42, ACR-0081510, ACR-0113971, CCR-0113974, ACI-0326350, CRI-0551685, CCF-

0833199, CCF-0830753, by Chevron, IBM, Intel, HP, and by King Abdullah University

of Science and Technology (KAUST) Award KUS-C1-016-04. Tapia supported in part

by a Sloan scholarship, PEO scholarship, NIH Molecular Biophysics Training Grant

(T32GM065088) and a Department of Education (GAANN) Fellowship. Thomas

supported in part by an NSF Graduate Research Fellowship, a PEO scholarship, a

Dept. of Education Graduate Fellowship (GAANN), and an IBM TJ Watson PhD

Fellowship.

REFERENCES

[1] E. Alm and D. Baker. Prediction of protein-folding mechanisms from free-energy landscapes

derived from native structures. Proc. Natl. Acad. Sci. USA, 96:20(1999), pp. 11305–11310.

[2] N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map protein folding

landscapes and analyze folding kinetics of known native structures. In: Proc. Int. Conf.

Comput. Molecular Biology (RECOMB), pages 2–11, 2002.

[3] N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map protein folding

landscapes and analyze folding kinetics of known native structures. J. Comput. Biol., 10:3-

4(2003), pp. 239–255. Special issue of Int. Conf. Comput. Molecular Biology (RECOMB)

2002.

[4] N. M. Amato and G. Song. Using motion planning to study protein folding pathways. J.

Comput. Biol., 9:2(2002), pp. 149–168. Special issue of Int. Conf. Comput. Molecular

Biology (RECOMB) 2001.

[5] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, and J.-C. Latombe. Stochastic roadmap

simulation: An efficient representation and algorithm for analyzing molecular motion. In:

Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pages 12–21, 2002.

[6] M. Apaydin, A. Singh, D. Brutlag, and J.-C. Latombe. Capturing molecular energy land-

scapes with probabilistic conformational roadmaps. In: Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), pages 932–939, 2001.

[7] O. B. Bayazit, G. Song, and N. M. Amato. Ligand binding with OBPRM and haptic user

input: Enhancing automatic motion planning with virtual touch. In: Proc. IEEE Int.

Conf. Robot. Autom. (ICRA), pages 954–959, 2001. This work was also presented as a

poster at RECOMB 2001.

[8] S. Cao and S.-J. Chen. Predicting RNA folding thermodynamics with a reduced chain repre-

sentation model. RNA, 11(2005), pp.1884–1897.



66 LYDIA TAPIA, SHAWNA THOMAS, AND NANCY M. AMATO

[9] S.-J. Chen and K. A. Dill. RNA folding energy landscapes. Proc. Natl. Acad. Sci. USA,

97(2000), pp. 646–651.

[10] T.-H. Chiang, D. Hsu, M. S. Apaydin, D. L. Brutlag, and J.-C. Latombe. Predicting

experimental quantities in protein folding kinetics using stochastic roadmap simulation.

In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pages 410–424, 2006.

[11] F. Chiti and C. Dobson. Protein misfolding, functional amyloid, and human disease. Annu.

Rev. Biochem., 75(2006), pp. 333–366.
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