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THE ANALYSIS OF BIASES OF COPY NUMBERS FROM

AFFYMETRIX SNP ARRAYS∗

LIN WAN† , YI XIAO† , QUAN CHEN† , MINGHUA DENG† , AND MINPING QIAN†

Abstract. Affymetrix SNP arrays are widely used for both genome-wide association and copy

number variation (CNV) studies, both of which depend on accurate copy number estimation. How-

ever, depending on the method used to copy number estimation, distortions from the actual copy

numbers can occur. Therefore, we demonstrate here several effects that can bias accurate copy num-

ber estimation, and we describe how some of these biases can be adjusted by existing methods, while

others require further study.

1. Introduction. DNA microarrays are widely used in both molecular biology

and medicine. Various prototypes of microarrays have been designed with different

aims, such as gene expression measurement, transcription factor binding region iden-

tification, chromatin modification profiling, SNP genotyping, copy number variation

scrutiny, and alternative splicing detection. Therefore, it becomes imperative to de-

velop new methods of accurately preprocessing microarray data in order to meet the

high resolution requirements of quantitative biology studies.

Specifically, human genetic variation studies [1] offer great promise in deciphering

the genetics of complex diseases through genome-wide association (GWA) [2] and copy

number variation (CNV) studies [3, 4]. Affymetrix SNP arrays, originally developed

for SNP genotyping [5], are now being widely used for CNV analyses [3, 4, 6]. However,

although numerous methods have been developed and have achieved high accuracy in

SNP genotyping [7, 8, 9, 10], methods for CNV inference [11, 12, 13, 14, 15, 16] are

still far from satisfactory [17, 18].

A key problem of current CNV studies is the lack of “gold standard” samples to

directly evaluate copy number estimation by various methods [17, 18]. To compen-

sate for this, methods for Affymetrix SNP arrays usually take the probe intensities,

such as the mean intensities of perfect match probes of SNPs, as the estimated copy

number [11, 15, 16, 6]. However, because of the complexities of hybridization, it is

natural to ask whether such estimation is really proportional to the copy numbers

of the target sequences. Up to now, most studies of SNP genotype calling and CNV

inference have not elucidated the biases in estimated copy numbers for Affymetrix

SNP arrays. On the other hand, many studies have reported on the effects of probe

hybridization mechanisms of microarray that could distort the probe intensity from

true copy number of target sequences. Although those studies were conducted on
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Affymetrix expression, tiling and exon arrays, we found that the basic principle un-

derlying various arrays could be generally applied to Affymetrix SNP arrays. We

summarize the possible effects as follows:

I. The binding affinities of probes differ according to the variability of probe

sequences; therefore, intensities of probes for the same target sequences can

vary greatly, depending on probe sequences [19, 20, 21, 22, 23, 24];

II. The background intensities of probes also have non-negligible variation from

probe to probe [25];

III. Saturation of probe intensities is limited by the number of oligonucleotides

for each probe [22, 26, 23];

IV. Cross-hybridization of probe to sequences other than the desired target se-

quence [25, 10, 27, 24];

V. Background noise in image scanning and computer data processing [28];

VI. Whole genome amplification (WGA) of sequences [12, 29].

With those effects in mind, we first explain how copy numbers estimated by tra-

ditional methods can remarkably distort the underlying real copy numbers of SNPs.

Next, we show that such biases can prevent accurate SNP genotype calling and CNV

inference. Finally, we explain how some existing algorithmic models can adjust these

biases to reflect a truer expression of the underlying real SNP copy numbers. Espe-

cially, we emphasize a statistical correction method, termed probe intensity composite

representation (PICR) model, which was proposed by the authors and Fu et al. in

[24] which can efficiently adjust the effects I, II and IV (see Appendix B for a brief

description of PICR).

2. Evidence of biases of copy numbers. As a means of estimating copy

numbers, many studies have used probe intensities, such as the mean intensities of

perfect match probes, as the copy number [11, 15, 16, 6]. This method assumes

that probe intensity is approximately proportional to copy numbers of the target

sequences. However, we found that the copy numbers estimated by mean intensity

can, in fact, be greatly biased from the real copy number and thus seriously affect

the accuracy of genotype calling and CNV inference. In this section, three cases are

given to demonstrate such biases.1

2.1. DNA samples with known DNA copy number of chromosome X.

We first utilized the samples of Affymetrix 100K SNP with known copy number of

X chromosomes (1X to 5X) hybridized [13]. This sample was used as a benchmark

to validate our assertions on copy number estimation. Here we use mean intensity of

perfect match probes as the copy number estimation (Figure 1(a,c)), and we also use

the PICR model for the purpose of comparison (Figure 1(b,d)).

1A brief description of the design of Affymetrix SNP array can be found in Appendix A. For

data and method, please refer to Appendix C and D.
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Fig. 1. Copy number estimation with different number of Chromosome X. (a-b): Boxplots of

ratios of the total copy numbers of the 2361 SNPs for 1X, 3X, 4X, and 5X samples relative to those

in the 2X sample; dashed lines in the plots are from the real number of chromosome X of samples;

(a) copy number estimated by mean of the all perfect match probe intensities for each SNP; (b) total

copy number estimated by PICR model (Ntotal = NA +NB). (c-d) The allele-specific copy numbers

of 50 randomly selected SNPs for 1X, 3X, 4X, and 5X samples relative to total copy numbers of

those in the 2X sample; (c) copy number estimated by mean perfect match probe intensity for allele

A and allele B, respectively; (d) allele-specific copy number estimated by PICR model; “NA” for

copy number of allele A and “NB” for copy number of allele B.

The ratio of total copy number of each SNP from the sample of interest to that

of the reference sample was usually taken into account. Here, the normal sample

with 2X was used as the reference compared to the 1X, 3X, 4X, and 5X samples. The

estimated copy numbers for a total of 2361 SNPs on chromosome X in both Xba array

and Hind array for 1X, 3X, 4X, and 5X samples relative to those in the 2X sample

are shown in Figure 1(a). One can clearly observe that the median ratio of each SNP

in each sample is greatly biased from its corresponding real ratio (dashed lines with
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the same color in Figure 1(a)). For most samples of 4X and 5X, ratios calculated are

below 2 and are obviously underestimated.

To show that such underestimation could confuse the inference of the subtle struc-

ture of genotype, we randomly selected 50 SNPs on chromosome X and plotted their

allele-specific copy number estimated by mean intensity (Figure 1(c)). We found that

the copy numbers estimated by mean intensities are not only seriously biased from the

real copy numbers, but that their genotype patterns are also nearly mixed together,

except for the 1X sample. However, after corrections by PICR, the accuracy of es-

timated copy numbers improved greatly such that the allelic copy number of most

SNPs are much closer to their real number than that by the mean intensity (Figure

1(c,d)). Meanwhile, the different genotype groups become separately clustered and

distinguishable (Figure 1(d)). However, about 15% to 25% of the SNPs are mixed

with other groups among samples with 3X-5X, possibly resulting from the fact that

saturation of probe intensity would occur with the increased copy number of target

sequences.

2.2. DNA fragments with multiple SNPs. In the example above, we used

the relative copy number with respect to copy number from reference samples. How-

ever, in many studies, well annotated reference samples are limited [17, 18] which

makes it difficult for us to obtain the relative copy numbers. It is therefore important

to study the biases caused by the multiplicative effects of probe intensity.

Table 1

Number of DNA fragments with multiple SNPs by SNP array prototype. DNA fragments with

physical position annotated as “—” (unknown) in Affymetrix annotation files are not counted here.

SNPs on signal fragment 50K Xba 50K Hind 250K Nsp 250K Sty

8 2 0 1 2

7 2 3 6 5

6 14 18 29 26

5 57 75 155 134

4 305 328 893 797

3 1647 1685 5375 4696

2 7784 7704 31026 28296

1 36488 34654 179469 163484

In the processing of Affymetrix SNP arrays, DNA samples are first digested with a

restriction enzyme (e.g., XbaI) and ligated with adapters into DNA fragments before

whole genome amplification. After the amplification, those DNA fragments contain-

ing the SNPs are then interrogated with SNP-specific probe-sets on the array through

hybridization [5]. It was pointed out that the amplification may have different effi-
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ciencies for different fragment sequences with different length and GC content [12].

Thus, we investigated the SNPs on same fragments which are supposed to have the

same copy number of target sequences and found that the estimated copy numbers

of SNPs on these DNA fragments are not always the same. That is, about 40% of

SNPs on the 50K Xba array are located on fragments with multiple SNPs (Table 1).

Here, we took 305 DNA fragments from the 50K Xba array having 4 SNPs on each

as an example. For about 150, 50% out of 305 fragments, we found that the ratio

of the maximum to the minimum copy numbers (mean intensities) of the 4 SNPs on

each fragment was greater than 2. Strikingly, across 90 HapMap samples, the pattern

of the copy numbers (mean intensities) of these 4 SNPs is similar, indicating that

such difference in mean intensities (estimated copy number) of SNPs is by no means

solely a factor of randomness. Figure 2(a) demonstrates 4 SNPs (SNP A-1697318,

SNP A-1683386, SNP A-1737711 and SNP A-1730973) located on the same fragment

with systematic copy number differences across 90 HapMap samples .

Based on this line of evidence, we asked whether such difference was due to the

bias from probe-dependent hybridization, such as effects I-IV, or probe dependent

hybridization. To address this question, PICR, which is an efficient correction for

biases from I, II and III, was applied. But the corrected copy numbers of SNPs on

the same DNA fragment can still not be considered as equal (data not shown).

2.3. Systematic biases in image scanning and computer data process-

ing. When exploring how the estimated copy numbers of SNPs on the same DNA

fragments differ so dramatically, Wan et al. studied the raw data (CEL files) of these

arrays and found systematic biases in image scanning and computer data processing

[28]. Figure 2(c) shows 3 randomly selected CEL images (generated by the dChip

software before normalization) from the 90 HapMap samples. Each image consists

of 1600 × 1600 grids representing the intensities and probe locations on the array.

It is observed that the probe intensities have surprising patterns of bright and dark

horizontal bands consistently across the arrays. This type of pattern was systemati-

cally observed in all 90 arrays [28]. These patterns were not designed on purpose by

Affymetrix for probe intensities of SNP array.

Comparing Figures 2(a,b) with Figure 2(c), we observed that the array intensities

have strong position-dependence, and, thus, the estimation of copy numbers must also

be position-dependent. For example, probes of SNP A-1683386 (green) are mainly

located in the lower half of the array while probes of SNP A-1737711 (blue) are

mainly located in the upper half of the array, which has lower intensities than the

lower part. Therefore, the estimated copy number values are positively correlated

with the intensity variation along the vertical direction of the array with Pearson

correlation coefficient 0.29 (p-value < 2.2e− 16) [28]. Although the examples in the

illustration here were selected from DNA fragments of multi-SNPs, such intensity bias
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Fig. 2. The copy number bias and systematic biases in image scanning and computer data

processing. (a) Mean intensities of 4 SNPs (SNP A-1697318, SNP A-1683386, SNP A-1737711

and SNP A-1730973) in all 90 samples. The mean intensities of the 4 SNPs in all 90 samples

are plotted in gray color. The colored points represent the mean of each SNP in the 90 samples.

Y-axis indicates the mean intensity. (b) The probe positions of the 4 SNPs on the Mapping 50K

Xba 240 array. The colored points in the plot correspond to the perfect match probes of the SNP

with SNP ID denoted in the same color at the bottom of the figure. The symbols “+” and “×” in

the plot represent perfect match probes for allele A and allele B, respectively. (c) Raw images of 3

CEL files randomly selected from the 90 HapMap samples; each image consists of 1600× 1600 grids

representing the intensities and locations of probes on the array.

also influences the copy number estimation of fragments with single SNP.

This phenomenon was also observed in other prototypes of Affymetrix SNP arrays,

including both 100K arrays and 500K arrays generated from various laboratories (data

not shown). Therefore, without correcting the above intensity bias, copy number

estimation might be subject to systematic bias. Interestingly, it has recently been

noticed that such systematic bias also exists in Affymetrix gene expression arrays

[30]. This makes it a general imperative that bias correction be conducted before

further analysis.
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It is further demonstrated that such bias within array has a multiplicative effect

(or additive effects in the log scale) to probe intensities. This means that such bias

can be adjusted by within array by certain normalization approach. Based on this

observation, Wan et al. developed an efficient method to adjust the systematic bias

within an array. After such correction, the estimated copy number and intensity

variations are not correlated with Pearson correlation coefficient 0.039 (p-value =

0.082) [28]. However, even after adjustment of image scanning effects on probe level

by method of [28] and then applying PICR, the copy numbers of SNPs on the same

DNA fragment can still not be considered as equal (data not shown), and we speculate

that effect VI is the most plausible reason (see section 3.3 for more details).

2.4. Biases of nonspecific hybridization. To illustrate the biases from non-

specific hybridization, we utilize the information of Y chromosome of female samples.

For female samples, the copy numbers of SNPs located on the Y chromosome should

be zero. Thus, the probes of SNPs located on Y chromosome can be mostly considered

as nonspecific hybridization, while probes of SNPs located on other chromosomes can

mostly be considered to have both specific and nonspecific hybridization, but with

specific hybridization as the domain. We used samples from Genome-Wide Human

SNP 6.0 Data Set since the SNP 6.0 array has over 900 SNPs located on Y chromosome

for our statistical analysis. To our surprise, a non-negligible portion of probes with

pure nonspecific hybridization can have intensities as high as the probes with specific

hybridization (see Table 2). This shows that background intensities (nonspecific hy-

bridization) of probes also have non-negligible variation from probe to probe. Studies

have also shown that the nonspecific hybridization is probe sequence-dependent [25].

Table 2

Nonspecific binding effects. Two female samples from the Genome-Wide Human SNP 6.0 Data

Set were used as an illustration. The probe intensities of SNP located on Y chromosome (Y ) and

non-Y chromosomes (Ȳ ) are summarized.

Samples Probe Intensity Min 1st Qu. Median Mean 3rd Qu. Max

NA12892 Y 84 234 476.5 1392 1492 20350

Ȳ 64 473 973 1229 1705 64880

NA06985 Y 49 126 235.5 811.9 808.8 13420

Ȳ 38 247 543 723.1 1005 20100

3. Methods for bias corrections.

3.1. The biases of the probe from binding affinities in hybridization,

background intensity, and saturation. Probe intensities not only vary from copy

numbers of target sequences but also strongly depend on binding affinities of probe

sequences. Since the binding affinities of probe sequences can vary greatly from probe
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to probe, the intensities of probes for a SNP cannot be treated as repeat samples

of its copy number. Therefore, instead of simply using mean or median intensity as

the estimation, we need to adjust the effects of probe binding affinities to accurately

estimate copy numbers.

Several groups have constructed the probe binding models and indicated how

binding affinities depend on the probe sequences [19, 20, 21, 22, 23, 31, 32, 33,

34]. Zhang et al. proposed a simple approximation of binding free energy using a

positional-dependent-nearest-neighbor (PDNN) model with good accuracy for perfect

matches [19, 20]. Other investigators have developed similar models [21, 22]. The

PDNN model is formulated in Equation (1), where E is the binding free energy of

perfect match, ωl is a weight factor that depends on the position of consecutive bases

along the oligonucleotide; bl is the l-th nucleotide of probe sequence, and λ is the

stacking energy of the pair of nearest-neighbors along the probe sequence.

(1) E =

24
∑

l=1

ωlλ(bi, bi+1),

where the λ characterizes the effect of the probe sequence to free energy by nearest-

neighbor of nucleotides. Thus, the PDNN model significantly improves the accuracy

from models based only on single nucleotide contents.

The specific hybridization intensity (Is) of probe has also been modeled with copy

numbers (N) and binding affinity (E) through the Langmuir-like absorption principle

[19, 20] (Is = N/(1 + eE)). Thus, the probe intensity I can be formulated as Equation

(2), where E is the binding free energy of the hybridization, N is the copy number,

or concentration, of sequences in binding, Ibg is the background intensity, and ε is the

measurement error of intensity [19, 20].

(2) I = Is + Ibg + ε = N
1

1 + eE
+ Ibg + ε.

It is noticed that for Affymetrix SNP arrays, the binding intensities of perfect

match probes not only include the contribution from the their perfect match tar-

get sequences from one allele, but also potentially include the binding of sequences

from their opposite allele with one mismatch site (the cross-hybridization of probe to

off-target allele sequence). This kind of binding affinity with 1-2 mismatch sites is

modeled by generalized PDNN (GPDNN) model [24].

Based both on the GPDNN model and Langmuir-like absorption principle, a sta-

tistical regression model, probe intensity composite representation (PICR)[24] model,

considers the complex binding of both perfect match of probe with its target se-

quences and specific binding to other target sequences (maybe in opposite allele) with

1-2 mismatch sites. Thus, the intensity of SNP probe can be described as

(3) I = IA
s + IB

s + Ibg + ε
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where IA
s is the specific hybridization intensity from allele A and IB

s is the specific

hybridization intensity from allele B (see Appendix B for more details). The PICR

model was successfully applied to Affymetrix SNP array for SNP genotyping and copy

number variation detections [24]. Furthermore, the PICR model can also reduce the

effect of the background intensity Ibg in Equation (2) via the regression approach.

The idea of PICR model is briefly described in Appendix B.

If copy numbers estimated by PICR are used for the example of X chromosome,

it is interesting to observe that ratios of copy numbers of SNPs for the 4 samples

(1X, 3X, 4X, and 5X) relative to those in sample 2X (Figure 1(c)) are much closer

to the true ratios than the traditional method and that the different genotype groups

become separately clustered and distinguishable (Figure 1(d)). On the other hand, in

Figure 1(d), one can also see that the saturation problem still exists after correction

by PICR. In fact, [19, 20] the effect from a limited number of oligonucleotides for

each probe is not considered. Hence, the result based on [19, 20] does not eliminate

the saturation problem. Abdueva et al. [26] did consider the saturation problem,

but their free energy model is not as accurate as [19, 20]. Held et al. [22] proposed

a more complete model recognizing concentrations of oligonucleotide for each probe,

but there is still lack of feasible statistical algorithm based on this model. Neither

can it be applied to real SNP arrays. It should also be noted that Binder et al.

have also conducted a systematic survey and analysis of both specific and nonspecific

hybridization of gene expression arrays [31, 32, 33, 34].

3.2. Biases from cross-hybridization of probe to sequences other than

the desired original target sequence. In the interrogation of heterozygous SNPs,

we found that there would be non-negligible cross-hybridization in Affymetrix SNP

arrays because 1) the intensity of perfect match probes not only contributed by per-

fect match binding with one allele, but also from mismatch binding with the other

allele with one mismatch nucleotide and 2) mismatch binding can be influential and

comparable to perfect match binding and thus should not be regarded as background

nonspecific binding. This explains why most methods do not have performances in

the genotyping of heterozygous SNP (e.g., AB) as good as those for homozygous SNPs

(e.g., AA or BB). Bengtsson et al. [10] used a statistical approach to solve this kind of

cross-hybridization, but it depends on a large training sample. PICR is more efficient

for adjustment of cross-hybridization in SNP array [24] since it qualitatively char-

acterizes both perfect and mismatch hybridization by physicochemical principle and

needs only each sample (array) itself to estimate the copy number. For homozygous

SNPs, one can see that copy number estimated by PICR of null-allele is closer to

zero (Figure 1(d)), while copy number estimated by the mean intensity is not (Figure

1(c)). For heterozygous SNPs, the allele-specific copy numbers by PICR are closer to

the real copy numbers (Figure 1(d)).
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Although perfect match probes are designed to be perfectly complementary to

target sequences, they may also share sequence similarity to other sequences existing

in the genome, thus resulting in another source of probe cross-hybridization. Such

cross-hybridization is, however, much more difficult to adjust. Johnson et al. provided

an adjustment method for Affymetrix tiling array using probe mappings to genomic

sequences [25], and Karpur et al. [27] provided an adjustment method for Affymetrix

Exon array using probe mappings to off-target transcripts. Approaches similar to

[25, 27] can also be used for Affymetrix SNP array to adjust cross-hybridization of

probes having many copies on whole genome with a few mismatches.

3.3. Biases from whole genome amplification. Although procedures have

been taken to correct biases of Affymetrix SNP array by PICR incorporating the

adjustment of image scanning effects, it has been found that the copy numbers of

SNPs on the same DNA fragment cannot yet be considered equal (data not shown).

Meanwhile, studies indicate that whole genome amplification (WGA) can introduce

many artifacts of CNV [29]. Some authors account for the biases introduced by WGA

by the length and GC content of DNA fragments amplified by PCR [29, 12]. However,

length and GC content cannot explain our cases of biases of copy number estimation

of SNPs on the same DNA fragment. It is also known that PCR is taken with a single

primer for all DNA sequences during the WGA procedures and that can fail if the

primer is bound to the internal regions of DNA sequences [35, 36]. Therefore, further

studies are needed to determine whether such biases are from PCR failure caused by

binding of primer to the internal regions of DNA fragments.

3.4. Discussion. Although we showed here that the accuracies of copy number

estimations may be impeded by various biases of probe intensity, it is still possible to

obtain highly reliable results with Affymetrix SNP array at relatively high resolution

with low-cost if proper statistical methods are applied. Affymetrix SNP 6.0 array is

now the standard protocol. Although Affymetrix SNP 6.0 drops the mismatch probes

and usually returns 6 perfect match probes for each SNP, the biases we summarized

above still remain a major challenge, especially the problem of cross-hybridization.

And our recent study indicate that by replacing general term of background with the

probe-dependent background estimated by PDNN model of non-specific hybridization,

PICR can still work well (in preparation).
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Appendix

Appendix A. Brief description of Affymetrix SNP array design.

We briefly describe the design of Affymetrix SNP arrays by taking the 100K

Mapping Array as an example. The Affymetrix SNP 100K Mapping Array consists

of one pair of Mapping 50K Xba array and 50K Hind array, each using 10 quartets to

interrogate a single dimorphic SNP site of alleles A and B, for example. Each quartet

consists of 2 pairs (a perfect match probe and a mismatch probe) of probes, one pair

for allele A and the other for allele B. Each probe presents a 25-mer oligonucleotide

sequence designed to either perfectly match the target sequence or mismatch at the

SNP site. The 10 quartets are designed to take a different shift (k) of nucleotide on

the probe sequence (k may take -4, -3, -2, -1, 0, 1, 2, 3, 4) surrounding the center

nucleotide of the probe sequence (k = 0 at position 13 of the 25-mer) and may also

take sense or antisense strands. It is important to note that mismatch probes have

one sure mismatch nucleotide at the center position (k = 0) and may have another

mismatch at a shift k 6= 0. Similar to the 100K array design, the Affymetrix Mapping

500K SNP Array consists of one pair of Mapping 250K Nsp array and 250K Sty array,

but only 6 quartets are used to interrogate each SNP, while the SNP 6.0 array has

fewer probes for each SNP and removess the mismatch probes.

Appendix B. Brief introduction of GPDNN and PICR model.

Based on previous work [24], we concluded that probe intensities for most oligonu-

cleotide arrays vary with copy numbers of target sequences and strongly depend on
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binding affinities of probe sequences. Thus far, however, the binding free energies

of only perfect match sequences have been characterized quantitatively, through a

positional-dependent-nearest-neighbor (PDNN) model, while probe intensities have

been modeled with copy numbers and binding affinities using the Langmuir-like ab-

sorption principle [19, 20] (also see section 3.1). The situation of hybridization is es-

pecially complex for the Affymetrix SNP array: we showed that probes of Affymetrix

SNP array are subjected to cross-hybridization by binding with off-target allele se-

quences, which can, in turn, greatly affect the accuracies of both genotype calling and

copy number estimation [24] (also see section 3.2).

To address the biases arising from both binding affinity and cross-hybridization of

probes, we studied the hybridization properties of sequence binding and developed the

generalized PDNN (GPDNN) model for the binding free energy involving both per-

fect match and cross-hybridization bindings. We then developed the probe intensity

composite representation (PICR) model based on both the Langmuir-like adsorption

principle [19, 20] and the GPDNN model. In PICR, the intensities of each probe of

a given SNP are decomposed into 4 terms: 2 terms for specific binding of the two

alleles, 1 term for background nonspecific binding, and an error term (see Equation

(4)).

(4)







































...

Ii = NAϕ(Ei,A) + NBϕ(Ei,B) + Ii
bg + ε

...

Ij = NAϕ(Ej,A) + NBϕ(Ej,B) + Ij
bg + ε

...

where ϕ(x) = 1/(1 + ex); NA is the copy number of allele A, and NB is the copy

number of allele B; Ei,A is the binding free energy of probe i to the sequences of allele

A, and Ei,B is the binding free energy of probe i to the sequences of allele B; Ii
bg and

Ij
bg are the background terms of probe i and j; ε is an error term. These binding free

energies like the Ei,A and Ei,B will be first calculated by the GPDNN model , and

then PICR model leads to a statistical linear regression based of Equation (4) that

yields consistent estimation of copy numbers utilizing the probe intensities for each

SNP.

For more information about PICR, please refer to [24] or the website at http:

//ctb.pku.edu.cn/~wanlin/PICR.

Appendix C. Data. The SNP array samples of the HapMap trio dataset

were downloaded from the Mapping 100K dataset (http://www.affymetrix.com/

support/technical/sample_data/hapmap_trio_data.affx) and the Mapping

500K dataset (http://www.affymetrix.com/support/technical/sample_data/

500k_data.affx). All the annotation files of the corresponding Affymetrix SNP ar-
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ray were downloaded from the Affymetrix website. Data of the Affymetrix 100K SNP

arrays hybridized with samples of 1 to 5 copies of the X-chromosome (1X to 5X) were

obtained from the Affymetrix Sample Data Sets for Copy Number Analysis

(http://www.affymetrix.com/support/technical/sample_data/

copy_number_data.affx). Data of the Affymetrix SNP 6.0 Array were from the

Genome-Wide Human SNP 6.0 Data Set, which can be ordered from Affymetrix.

Appendix D. Data processing and copy number estimations. Two meth-

ods were utilized for copy number estimations for Affymetrix SNP array.

• Copy number from mean intensity of perfect match probes. A probe-

level quantile normalization is taken across samples. For each sample and

given SNP, copy number for allele A is taken as mean intensity of perfect

match probes of allele A; copy number for allele B is taken as mean intensity

of perfect match probes of allele B [11, 15, 16, 6]. The total copy number of

each SNP is taken as copy number of allele A plus copy number of allele B.

• Copy number estimated by the PICR model [24]. The PICR model

can estimate allele-specific copy number (NA and NB in Equation (4)) with

adjustment of the biases from probe binding affinity, background intensity,

and cross-hybridization from allele-specific target bindings for a single sample.

For each sample, the total copy number is taken as the sum of two allele-

specific copy numbers estimated by PICR of each SNP. We then normalized

copy number estimated between samples by multiplying a sample-specific

constant to make the median copy number of each sample the same across

different samples.
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