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KINEMATICS OF THE ROLLING SPHERE AND QUANTUM SPIN∗

ANTHONY M. BLOCH† AND ALBERTO G. ROJO‡

Abstract. We consider the kinematics and control of a sphere rolling of a curved surface and

analyze its rotation by mapping the system to the precession of a spin 1/2 in a magnetic field of

variable magnitude and direction. This mapping is useful in understanding the role of the geometrical

phase and generalizes the kinematic control problem of a ball rolling on a plane.

1. Introduction. In this paper we consider the geometry and kinematics of a
ball rolling on a curved surface and its relationship to kinematic control. In particular
we consider a question similar to that posed in the title of reference [8]: How much
does a sphere rotate when rolling on a curved surface? In [8], the old problem of the
rotation of a torque free, non-spherical body is reanalyzed. The angle of rotation is
identified to have two components, one dynamical and one geometrical (the so called
Berry phase), independent of the time elapsed during the rotation. This analysis
can also be generlalized to understand the problem of controlling the orientation of a
satellite with momentum wheels (see [3]).

Here we consider a related but different problem: a sphere is made to roll without
slipping on a given curve Γ on a surface. The question is, if the sphere completes
a circuit, what is the rotation matrix connecting the initial and final configuration
of the sphere? The problem we are considering is therefore a kinematic rather than
a dynamic one: the trajectory of the contact point of the sphere and the surface
is dictated externally and the rolling constraint is imposed. We make contact with
recent approaches that consider the same problem [9, 10] (but on a plane), and in
particular, we address the nice question posed by Brockett and Dai [11]: a sphere lies
on a table and is made to rotate by a flat plane on top of it, parallel to the table. The
question is: if every point of the plane describes a circle, what is the trajectory and
motion of the sphere? Moreover we show how to generalize this analysis to the more
general problem of a ball rolling on a curved surface. We show in this general setting
that rolling causes the geometrical phase to vanish when one completes a closed curve
and we calculute the value of the remaining geometric phase.

The problem is a particular (but important) case of the control of underactuated
kinematic control systems of the form ẋ = A(x)u where x ∈ Rn, u ∈ Rm, m < n and
A is n× n. The prototypical example of this problem is the nonholonomic integrator
or Heisbenberg system as analyzed in [7] (see also [17] and e.g. [6]). A related key
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example is the kinematic control of rigid body systems with two controls. Some of the
most interesting early work in this area was discussed in the work of Baillieul (see [1]
and [2]). There is of course much other literature in this area, see e.g. the references
in [17]. In the current setting we analyze a uniform sphere (perfectly symmetric rigid
body) constrained to move a surface. One can think here too of the motion as being
generated by moving a plane on top of the sphere.

A novel feature here is that we treat the problem by exploiting its isomorphism to
the precession of a spin 1/2 in a time-dependent magnetic field. In the mapping, the
arc length of the curve plays the role of time. For rolling on a plane the magnitude
of the magnetic field is 1/R with R the radius of the sphere, and the direction of the
magnetic field is that of the instantaneous angular velocity of the rolling sphere. For
a curved surface the normal curvature and the torsion of the curve affect the value
of the effective magnetic field. Closely related to the present paper is the use of the
isomorphism between classical dynamics and that of a spin 1/2 by Berry and Robbins
in Ref. [12], especially their classical view of the Landau-Zener [14] problem. In a
related paper, see [5], we use the rolling analogy to analyze the Lanau-Zener problem.
We discuss this idea briefly at the end of this paper and we hope to extend this idea
further to the control of spins.

The precession of a spin 1/2 is widely treated in the literature and one can bor-
row those results to acquire an intuition for the rolling sphere. Conversely, since a
rolling sphere is a tangible physical problem, the present treatment is also useful in
understanding spin precession, Berry’s phases and it’s classical counterpart, Hannay’s
angle [13].

2. Rolling on a Plane and Quantum Precession. Consider a sphere of
radius R rolling on a curve Γ on a plane. We define a local triad of unit vectors at
the contact point (the so called Darboux frame [15]): the tangent t to Γ, the normal
n to the surface, and u = n × t, the tangent normal. For rolling on a plane n is a
constant vector, and the velocity of the center of the sphere is along the tangent to
the curve. This situation will change for rolling on a curved surface, but, as we will
see, the general idea of the mapping to a precessing spin is the same.

The translational velocity of the sphere is V = tV (t) and the rolling constraint
means that the instantaneous velocity at the contact point is zero [16]:

−→ω × (nR) = V = tV (t)(1)

with −→ω the angular velocity and R the radius of the sphere. This equation is nonin-
tegrable and constitutes a paradigmatic nonholonomic constraint [17].

Taking the cross product with n on both sides of the above equation we have

(2) −→ω =
V (t)
R

n× t ≡ V (t)
R

u.
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Notice that in the above equation we have used the “no twist” condition −→ω ·n = 0,
that is, we are consider rolling without an instantaneous rotation along the normal.

The instantaneous velocity Ẋ of a point of coordinate X (with respect to the
center of the sphere) on the surface of the sphere is

(3) Ẋ = −→ω ×X =
V (t)
R

u×X.

Now we rewrite V (t) = ds/dt where s is the arc length of the curve Γ(t), and (3)
becomes

(4)
dX
ds

=
u
R
×X.

Here we may regard u as a control vector and the equation (4) as representing a
fully actuated kinematic control problem in three-space.

If we regard X = (x, y, z) as a magnetic moment, the above equation describes its
precession in the presence of a magnetic field B = − 1

R (ux, uy, uz) = −−→ω s of constant
magnitude 1/R. (We use here the notation −→ω s which has units of inverse arc length
to distinguish it from −→ω which has units of inverse time.) The direction of B is −u,
and varies with s, the arc length, which plays the role of time. If the rolling is on
a horizontal plane, then Bz=0, but we keep this notation to make contact with the
rolling on an arbitrary surface.

There is an isomorphism between the rolling sphere written in this way with a
spin 1/2 precessing in this magnetic field. This isomorphism can be seen clearly if,
(using B = −−→ω ) we rewrite Equation (4) in the form

(5)
d

ds

 x

y

z

 =

 0 Bz −By

−Bz 0 Bx

By −Bx 0


 x

y

z

 ,

which is the same as the following equation of motion for two complex numbers a and
b (we write s instead of t for time in order to keep the analogy)

(6) i
d

ds

(
a

b

)
= −1

2

(
Bz Bx − iBy

Bx + iBy −Bz

)(
a

b

)
,

with the identification

x ≡ ab∗ + ba∗

y ≡ i (ab∗ − ba∗)

z ≡ aa∗ − bb∗.(7)

Again note that from the control point of view we may regard B = − 1
R (ux, uy, uz)

= −−→ω as the control vector of a fully actuated kinematic system.
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The real numbers (x, y, z) represent the coordinates of a point on the surface of
the sphere referred to a coordinate system fixed in space (that is, not rotating), and
whose origin is in the center of the sphere. The above mapping is certainly possible
because of the su(2)− so(3) isomorphism [18].

Equation (6) is Schrödinger’s equation for the spinor χ = (a, b) in the presence of
a magnetic field B:

(8) i
d

ds
χ = −B · Sχ ≡ Hχ,

where ~ = 1 and H is the Hamiltonian. Also, the vector S = 1
2 (σx, σy, σz) is the

spin operator, and σi are Pauli’s matrices. Notice that in this mapping, the magnetic
fields and the frequencies have units of inverse length,

Equation (7) implies that we can extract the behavior of the rolling sphere as a
function of arc length by solving the motion of a spin 1/2 in a time-varying magnetic
field. To our knowledge the equivalence between the motion of rigid body and a two-
level system (a spin 1/2), in the form of the mapping of Eq. (7) was first pointed
out by Feynman, Vernon and Hellwarth [19] and later discussed several times [22].
Earlier, Bloch [20] had derived the precession equation for the density matrix of spin
1/2 and therefore the points (x, y, z) that result from the mapping from spinors are
called the Bloch sphere.

One of the novelties of the present paper is to discuss the rolling using the arc
length as time and identifying the isomorphism between the rolling sphere and the
quantum spin in exactly solvable cases.

It is also important to note that, using the isomorphism between R3 and so(3)
given by

(9)

ˆ x

y

z

 =

 0 z −y

−z 0 x

y −x 0


equation (4) may be written as

(10)
dX̂
ds

= [
û
R

, X̂].

This is a kinematic control problem on an adjoint orbit of the orthogonal group
SO(3) – in this case the sphere.

One can pose the following optimal control problem for this system:

(11) min
u(·)

∫ S

0

(u2
x + u2

y + u2
z)ds,

subject to the equation (10) and the endpoint conditions: X̂(0) = X̂0 and X̂(S) = X̂S ,
This optimal control can be solved in a number of ways, yielding geodesics on the
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sphere. In particular one can show that one obtains constant controls (or magnetic
fields in this case.) leading to simple conjugation on the sphere.

One can in fact show that the full solution to the problem is of the coupled double
bracket form (see [4])

dX̂
ds

= [X̂, [P̂, X̂]]

dP̂
ds

= [P̂, [P̂, X̂]](12)

where û = [P̂, X̂] and P̂ is matrix Lagrange multiplier. One can check that the
control vector is constant along the flow.

3. Constant Magnetic Field/Constant Control. Consider the simplest case
of constant magnetic field or constant control. We choose B = B0k̂, constant in the
+z direction. This corresponds to the sphere rolling on a vertical plane. Eq (6)
becomes:

(13) i
d

ds

(
a

b

)
= −1

2

(
B0 0
0 −B0

)(
a

b

)
,

with solutions: (
a(s)
b(s)

)
=

(
eisB0/2a(0)
e−isB0/2b(0)

)
.(14)

Substituting (14) in (7) we obtain:

x(s) = x(0) cos (B0s) + y(0) sin (B0s)

y(s) = y(0) cos (B0s)− x(0) sin (B0s)

z(s) = z(0),(15)

which means that the sphere is rotating clockwise around a constant axis in the z

direction. This corresponds to −→ω in the −z direction. In other words, a constant
magnetic field in the z direction corresponds to the sphere moving in a straight line
in the xy plane, rolling on a vertical wall. The same situation applies if a constant
field is directed in any other orientation.

Thus from the previous section we have
Theorem 1. Rolling of the sphere on a straight line on any plane corresponds

to geodesic motion in s.

4. The Planar Field and Rotation in a Circle. Consider a magnetic field
varying on the xy plane as B = B(cos αs, sinαs, 0). This corresponds to u rotating
with the same frequency in the same plane, and the rolling problem becomes that of
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1
( )xy sR

− × ≡n t B1/r α≡

A

B

C

R

Fig. 1. The lollipop, or a sphere rolling counterclockwise on a circle of radius r corresponds to

a spin 1/2 precessing on a magnetic field that rotates in the xy plane.

a sphere of radius R = 1/B rolling counterclockwise on a circle of radius r = 1/α (see
Figure 4). In this setting we only have two controls.

In turn, this corresponds to a time (or arc length) dependent Hamiltonian H =
−B · S, which can be solved by noting that

2B · S =

(
0 Be−iαs

Beiαs 0

)
= U∗

(
0 B

B 0

)
U,(16)

with

U =

(
eiαs/2 0

0 e−iαs/2

)
.(17)

Substituting the above relations in (6) we obtain a time independent equation for
the coefficients χ̃(s) = (ã, b̃) = (eiαs/2a, e−iαs/2b)

(18) i
d

ds

(
ã

b̃

)
= −1

2

(
α B

B −α

)(
ã

b̃

)
≡ H̃

(
ã

b̃

)
.

Transformations (16) and (17) correspond to transforming to a frame that rotates
with angular velocity α [25]. When transforming to the rotating frame, the angular
velocity acquires a component α = 1/r in the z direction and the frequency of rotation
in the rotating frame is

(19) Ω =
√

B2 + α2 =
1

rR

√
r2 + R2
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This can be seen in the spinor language by noting that, since H̃ in Eq. (18) is
time-independent , the solutions are

χ̃(s) = e

i
2 s

 α B

B −α


χ̃(0)

= [cos (Ωs/2) + i~σ ·m sin (Ωs/2)] χ̃(0),(20)

with ±Ω =
√

B2 + α2 (twice) the eigenvalues of H̃ and m = (r, 0, R)/
√

r2 + R2 a unit
vector with its x axis in the direction AC. Notice the presence of the factor of 2 in the
relation between the eigenvalues of H and the corresponding rotational frequencies
of the rolling problem. This comes from the factor 1/2 that emerges naturally in the
mapping to the spin problem of Eq. (6). It is important to keep track of this factor
in switching to each side of the isomorphism. Equation (20) describes a rotation at
a rate Ω with respect to an axis in the direction of the “stick” of a lollipop (the
direction joining A to the center of the sphere (see Fig. (4)). Notice that solving
for the evolution by exponentiating H̃ is possible because H̃ does not depend on s.
If there is an s-dependence and the matrices H̃ at different s do not commute the
solution is a “time ordered” exponential that in general is not exactly solvable.

After the lollipop completes a circle, the angle δ of rotation is

(21) δ =
2π

α
Ω = 2π

√
1 +

( r

R

)2

.

Notice that, when R � r the angle of rotation is δ ≈ 2πr/R, corresponding to
rolling in a line of length equal to the perimeter of the circle.

We see that, after traveling on a circle the sphere is rotated by 2πΩ/α with respect
to an axis tilted with respect to the plane; this is the nonholonomy treated in [10]
and [24].

The angle of rotation δ (of both the spin and the lollipop) has a simple geometric
interpretation: when the lollipop rolls, the point of contact C moves on the circular rim
of the cone ABC (see Figure 4). At the same time, the point C “paints” on the sphere
a circle of diameter BC = 2rR/

√
r2 + R2. (This is easily calculated with simple

geometrical considerations from Figure 4.) This means that after a revolution of
length 2πr the angle rotated is 2πr/(BC/2) from which Eq. (21) follows immediately.

At this point we consider Brockett’s question mentioned in the introduction. No-
tice first that, as the sphere rolls on a circle, the velocity at the top of the sphere is
twice the velocity V at the center of the sphere. Since each point of the plane on
top of the sphere describes a circle of radius R1, the velocity VP of the plane also
describes a circle. Therefore, since the sphere has a rolling condition with the upper
plane, then VP = 2V, meaning that, as the plane describes a circle of radius R1 the



228 ANTHONY M. BLOCH AND ALBERTO G. ROJO

sphere describes a circle of radius R1/2. We can then use the above analysis to relate
the rotatoin of the plate to the rotation of the ball.

Notice also that for s = 2π/α the spinor χ changes sign due to the 1/2 factor in
the transformation. Nevertheless, since the mapping of (7) is quadratic in a and b,
changing their signs corresponds to the same values (x, y, z) for the orientations. More
specifically, the quantities a and b determine univocally x, y and z, but the reverse
is not valid: the quantum evolution determines univocally the classical evolution but
there is some ambiguity in going from the classical to the quantum case. For example
if we perform the “gauge transformation” (a, b) → eiφ(s)(a, b) the mapping to the X

coordinate remains unchanged.
Note also that we have
Theorem 2. Rolling of the sphere on a circle on any plane corresponds to

geodesic motion in s in a coordinate system rotating with the sphere.

5. Rolling on a Curved Surface. In this section we extend the treatment of
rolling on a plane to rolling on a curved surface (See Figure 5). If we call XP the
coordinate of the contact point, the coordinate Xc of the center of the sphere is:

(22) Xc = XP + Rn,

and its velocity is given by

Ẋc = ẊP + Rṅ,

=
(
t + R

dn
ds

)
ds

dt
.(23)

The rolling condition is that the velocity of a point of the sphere in contact with
the surface is zero (See Eq.(1)):

(24) −→ω × (nR) = Ẋc.

Again, taking the cross product with n on both sides of the equation above we
obtain

(25) −→ω =
1
R

n× Ẋc.

We now replace (23) in (25), and use the fact that, for a curved surface, the
variation of the normal is given by

(26)
dn
ds

= −κnt− τru,

with κn the normal curvature and τr the torsion of the curve, both evaluated at the
contact point. We obtain
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= ×u n t

t

v

n

( )tΓ

ω

Fig. 2. Sphere rolling along a curve Γ of zero torsion (meaning that the velocity of the center

of the sphere is parallel to the tangent of the curve at the contact point).

(27) −→ω =
[

1
R

(1− κnR)u + τrt
]

ds

dt
.

The discussion for the planar case extends to the curved surface, and the rolling
of the sphere is equivalent to a spin 1/2 precessing on a magnetic field B(s) given by

(28) B(s) = −
[

1
R

(1− κnR)u + τrt
]

,

with the arc length s playing the role of time. This is turn gives us the control
vector fields for rolling on the surface. In the following section, as an example of this
formulation we consider rolling on a spherical surface.

6. Sphere Rolling on a Spherical Surface. In this section we consider a
sphere of radius R rolling on a second sphere of radius r. The rolling line will be
a parallel of latitude π/2 − θ (see Figure 3). This means that the normal curva-
ture is constant 1/r, and also that the torsion is zero. The magnetic field for the
corresponding spin problem is therefore:

(29) B±(s) = −(±)
[

1
R

(
1± R

r

)
u
]

= −(±)
1

R̃±
u,
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1

R+

=− uB
ɶ

θ r

RA

B

C

Dβ

Fig. 3. Sphere rolling on a sphere.

with R̃± = rR/(r ± R) a reduced radius and the plus and minus signs refer to the
rolling outside and inside of the sphere of radius r respectively.

For a sphere rolling on a parallel, the instantaneous angular velocity (and the
magnetic field) describes a cone forming an angle θ with the vertical. The total
arc length of the parallel is r sin θ meaning that the vector u rotates with angular
frequency α given by α = 1/(r sin θ). The corresponding magnetic field is therefore

B±(s) = (Bx, By, Bz)±

= (±)
1

R̃±
(cos θ cos αs, cos θ sinαs,− sin θ)(30)

with the term B · S in the corresponding Hamiltonian given in this case by

B · S = ±1
2

1

R̃±

(
− sin θ cos θe−iαs

cos θeiαs sin θ

)
.(31)

This again is an exactly solvable Hamiltonian that was first studied by Rabi

Using the same transformation matrix of Eq. (17) the above Hamiltonian can be
rendered time independent. We write it in the following form

H̃ = −1
2

(
−B± sin θ + α B±cos θ

B±cos θ B±sin θ − α

)
,(32)
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with B± = 1/R̃±.
The eigenvalues of H̃ are E± = Ω±/2 with

Ω± = (±)
1

R̃±

√√√√1− 2R̃±

r
+

(
R̃±

r sin θ

)2

,(33)

with the spinor precessing, in the rotating frame, around an axis that forms an angle
β (see Figure 3) with the xy plane, with

(34) tanβ = tan θ − R

r + R

1
sin θ cos θ

The second term in (34) reflects the fact that the small sphere rotates instanta-
neously on the tangent plane that contains BC (see Figure 3). Equation (34) can be
easily derived by simple geometric considerations from Figure (3).

After a complete revolution the angle or rotation δ is

(35) δ± = 2πr sin θΩ±.

After a little algebra we obtain

(36) δ± = ±2π cos θ

√
1 +

(
r tan θ

R

)2

Notice that, if we compare with the rotation in a plane from Eq. (19), the rotation
corresponds to rolling on a circle of radius equal to that of the unfolded cone tangent
to the parallel (See Fig. 3). The angle of rotation along that circle is not 2π but
2π cos θ. This geometric factor is the same that appears in Foucault’s pendulum and
in Berry’s phase for a spin precessing on a cone (we will come back to this point
below). Also, notice that when r = R the angle of rotation is always 2π independent
of latitude.

We finish this section with a discussion of the differences and similarities between
the Berry phase for a precessing spin 1/2 in the adiabatic approximation and the
rolling of two spheres.

The Hamiltonian for a spin in a magnetic field that precesses along the z axis at
frequency α is given by (32), where in principle α and B0 are independent parameters.
If α � B0 (the adiabatic approximation) the eigenvalues (eigenfrequencies) of H̃ are

(37) Ω '
√

B2
± − 2αB± sin θ ' B± − (±)α sin θ.

After a period of time 2π/α the change ∆φ in the phase of the spin is

(38) ∆φ = 2π
B±

α
− (±)2π sin θ.
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The first term is the dynamical phase and the second is a purely geometrical one,
independent of the parameters B0 and α, and given by (half) the solid angle described
by the field.

For the rolling sphere we can also study an “adiabatic approximation” since α �
B0 corresponds to r � R. In other words, in general the adiabatic approximation
will correspond to the radius of the rolling sphere much smaller than the radius of
curvature of the surface. On the other hand, in contrast with the spin case, the
frequency of rotation α = 1/r sin θ “knows” about the latitude and the curvature.
So we expect some differences and some similarities. Replacing the values of B± =
±1/R̃± ≡ (±)1/R± 1/r in (38) we obtain the angle of rotation of the sphere in each
case (in the adiabatic approximation)

∆φ± = ±2πr sin θ

(
1
R
± 1

r

)
− (±)2π sin θ.

= ±2π
r sin θ

R
(39)

Notice that there is a cancelation of the geometric phase for rolling. In the spin
problem, the frequency ω of rotation of the field (α for rolling) and the magnitude
of the field B± are independent and therefore the total angle of rotation is given by
Eq.(38), with the second term a purely geometric term independent of the parameters
of the problem. In the rolling case the frequency and the field are not independent,
and the “dynamical” phase contains a term that cancels the geometric one. As a
result, the total rotation is given by a magnitude that depends on the parameters of
the problem, which, in the spin language corresponds to the dynamical phase only.
This cancelation is a general result that we will visit in the next section.

Again, from above we have

Theorem 3. Rotation of a sphere on a line of lattitude of a spherical surface
corresponds to geodesic motion in s in the rotating frame.

In the next section we discuss the general connection between rolling and the
Berry phase for spins in the adiabatic approximation.

7. The Adiabatic Approximation and Rolling on a Curved Surface. In
this section we compare the equivalence between the adiabatic approximation for a
spin precessing in a magnetic field that changes direction at a slow rate and rolling on a
surface. In the spin case, the dimensionless parameter controlling the approximation is
the ratio of the instantaneous frequency (proportional to the instantaneous magnitude
of the field) with the rate at which it’s direction is changing.

In the rolling case the instantaneous frequency corresponds to the magnitude of
B(s) and the rate of change in its direction is related to the normal curvature and to
the curve’s torsion.

In the adiabatic approximation for spins [27], one works in an “instantaneous”
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basis, treating first s (time) as a parameter and solving the eigenvalue equation as
though the problem were static:

(40) H(s)χ(s) = E(s)χ(s) ≡ Ω(s)
2

χ(s).

Then the general solution is written as linear combinations of the instantaneous
eigenstates. As a result, in the adiabatic approximation, the spinor at time s is given
by

(41) χ(s) = eiγ(s)ei
∫ s
0 ds′E(s′)χ(0).

The argument of the second exponential above represents the dynamic phase,
which involves the integral of (half) the following angular frequency:

Ω(s) = |B(s)| = 1
R

√
[1− κn(s)R]2 + [τ(s)R]2

' 1
R
− κn(s)(42)

This can be seen, for example from Equation (31): the eigenvalues of B · S with
s treated as a parameter are ±|B(s)|/2.

The (instantaneous) direction of the field is in the direction uB given by

(43) uB =
B(s)
|B(s)|

= − (1− κnR)u + τrt√
(1− κnR)2 + τ2

r

In general, the eigenvalues of a Pauli matrix in an arbitrary direction uB ·~σ given
by the unit vector uB = (ux, uy, uz) are ±1. This is verified by noting that (defining
ux + iuy = ρeiφ)

(44) (uB · ~σ) χ±(uB) =

(
uz ρe−iφ

ρeiφ −uz

)
χ±(uB) = ±χ±(uB),

with χ±(uB) = (1,±(1−uz)e±iφ/ρ). Notice that the dependence of χ on s is through
the orientation of u.

The first term of (41), the geometric phase γ, is the Berry phase, and is given by
[28]

(45) γ̇(s) = iχ(uB(s))†
d

ds
χ(uB(s)).

Without loss of generality we express uB in polar coordinates uB = (cos θ cos φ,
cos θ cos φ, sin θ), where the quantization axis z is perpendicular to the instantaneous
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plane of motion of the center of mass of the rolling sphere. This means that the
normalized spinor is:

(46) χ(uB(s)) =

 cos θ(s)√
1+sin θ(s)√

1 + sin θ(s)e−iφ(s)

 .

From the above expression and (45) we can compute the geometric phase:

(47) χ̇ = iχ†
d

ds
χ =

1 + sin θ

2
dφ

ds
.

Here dφ is the angle of rotation of the center of mass of the sphere with respect
to an instantaneous axis of rotation. The first term of the right hand side is 2π after
integration on a closed circuit. And the second term cancels the curvature term from
Eq. (42). This results from the identity

(48)
dφ

ds
=

κn

sin θ
.

Our final result is that, as anticipated in the two spheres case, in general there is
no Berry phase for rolling as a result of the above cancelation:

δ± = ±
(∫ s

0

ds′Ω(s′) + 2γ(s)
)

= ±L

R
+ 2π(49)

Note that, if we specify this result to the sphere rolling on the parallel of a sphere of
radius r, we have L = 2πr sin θ. Replacing these in Eq. (42) we obtain the result of
Eq. (39) as expected. The discrepancy of the (unimportant) factor 2π results from
the fact that the treatment in the present section is in the rest frame and that of
section 6 is in the rotating frame. The plus and minus signs corresponds both to the
two senses of traveling the circuit and the two sides of the surface on which the sphere
can roll.

8. Rolling on a Cornu Spiral and the Landau-Zener Problem. In this
section we consider a “magnetic field” of constant magnitude B0 varying on the xy

plane as

(50) B = B0(cos φ(s), sinφ(s), 0) = −−→ω ,

which corresponds to the angular frequency rotating with the (varying) frequency
φ(s) in the plane. The rolling problem becomes that of a sphere of radius R = 1/B0

rolling on a planar curve of local curvature given by

(51) κ(s) = φ̇ ≡ dφ

ds
.



ROLLING SPHERE AND QUANTUM SPIN 235

This corresponds to a time (or arc length) dependent Hamiltonian H = −B · S,
which can be solved by noting that

B · S =

(
0 B0e

−iφ(s)

B0e
iφ(s) 0

)

= U∗

(
0 B0

B0 0

)
U,(52)

with

U =

(
eiφ(s)/2 0

0 e−iφ(s)/2

)
.(53)

Substituting the above relations in (6), and using (51) we obtain a time dependent
equation for the coefficients χ̃(s) = (ã, b̃) = (eiφ/2a, e−iφ/2b)

(54) i
d

ds

(
ã

b̃

)
= −1

2

(
κ(s) B0

B0 −κ(s)

)(
ã

b̃

)
≡ H̃

(
ã

b̃

)
.

We have obtained the nice result that rolling on a planar curve is isomorphic
to spin precession on a magnetic field that is constant in (some direction of) the xy

plane, and with a z component that varies in time according to the local curvature.
For example, this means that rolling on a Cornu spiral (a curve whose curvature is
proportional to the arc length), defined as

(55) φ(s) = as2/2,

with a a constant, corresponds to the Landau-Zener[14] problem of a spin in a mag-
netic field whose z component varies linearly with time Bz = as and a constant xy

coupling of magnitude 1/R. The prototypical question in the Landau-Zener problem
is the flipping of a spin that starts, for t → −∞, in a well defined orientation in the z

direction. In the language of section 2 this means that |a(−∞)| = 1, and |b(−∞)| = 0.
In the sphere isomorphism, the level splitting ∆E (See Figure 4) increases in time
(arc length s) as ∆E = as and the level coupling is B0 = 1/R, constant in time. The
problem is also called the avoided level crossing. The name comes from the fact that,
when B0 = 0 the levels for spin up and down cross at s = 0. The remarkable result
obtained by Zener is that the probability of the spin remaining up after the evolution
is, in our notation

(56) |a(∞)| = e−π/2aR2
.

In [5] we show show that the non-adiabatic limit when the levels are crossed very
fast (which for rolling corresponds to a sphere much larger than the size of the Cornu
spiral) can be obtained in a simple way using the rolling picture.
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t s≡

1
x R
B =

R

θ

ω
�

2 /aπ=ℓ

)a

)b

P

Q

E as=∆

s

Fig. 4. Equivalence between a) rolling on a Cornu spiral and b) the Landau-Zener problem of

the spin flip probability on a time dependent field.

Note that the control problem in this case does not correspond to optimal motion
in the sense desribed earlier.
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