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NONHOLONOMIC SYSTEMS AND SUB-RIEMANNIAN

GEOMETRY∗

OVIDIU CALIN† , DER-CHEN CHANG‡ , AND STEPHEN S.T. YAU§

Abstract. This paper presents several classical mechanical systems with nonholonomic con-

straints from the point of view of sub-Riemannian geometry. For those systems that satisfy the

bracket generating condition the system can move continuously between any two given states. How-

ever, the paper provides a counterexample to show that the bracket generating condition is not also

a sufficient condition for connectivity. All possible motions of the system correspond to curves tan-

gent to the distribution defined by the nonholonomic constraints. Among the connecting curves we

distinguish an optimal one which minimizes a certain energy induced by a natural sub-Riemannian

metric on the non-integrable distribution. The paper discusses several classical problems such as the

knife edge, the skater, the rolling disk and the nonholonomic bicycle.
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1. Introduction. The goal of this expository paper is to explore some classical

mechanical systems with constraints from the point of view of the sub-Riemannian

geometry. In this framework we have control over the velocities of the system, which

belong to a certain non-integrable distribution defined by the nonholonomic con-

straints. One of the main problems is to determine whether there is a continuous

curve tangent to the distribution and connecting any two given points. It was shown

by Chow [3] that if the bracket generating condition holds, then the system can move

continuously, piece-wise differentiable, between any two given states. The bracket

generating condition says that the vector fields which generate the distribution, to-

gether with their iterated brackets, span the tangent space of the coordinate space at

each point. If the number of brackets needed to generate all the missing directions

at a point p is denoted by k, then it is said that the distribution is of step k + 1 at

the point p. This way, the step 1 corresponds to the case when the distribution is the

entire tangent bundle of a Riemannian manifold.

The distribution is endowed with a metric which enables us to measure the dis-

tance along the curves tangent to the distribution and to define the variational prob-

lems related to the length and energy of the trajectories. Most of the time these

equations are not the same as the classical variational nonholonomic equations con-

sidered by other authors. This is partially due to the fact that the Lagrangians which
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describe the dynamics of the system are constructed only by pure geometric means,

with the kinetic energy along the motion defined by the underlining sub-Riemannian

metric, and no other exterior fields like mass, momenta of inertia, gravitation, etc.,

are added to the Lagrangian. This is also consistent with the Riemannian geometry

case, where the velocity is defined using the Riemannian metric on the tangent bun-

dle. In general, the variational equations are hard or almost impossible to be solved

explicitly. However, this paper presents closed form integration formulas for some

nonholonomic systems such as the rolling coin or the skating knife edge.

Since the sub-Riemannian metric determines the structure of the Lagrangian

which implicitly determines the optimal solution, one natural question is how one

chooses the natural metric among the infinitely many sub-Riemannian metrics which

exist on a given distribution? Assume there is a distinguished basis {X1, . . . , Xk} of

vector fields on the non-integrable distribution H, with the property that each vector

field has a certain physical meaning (such as rotation, translation, angular momen-

tum, acceleration etc). Then the natural sub-Riemannian metric is the unique metric

with respect to the aforementioned basis becomes orthonormal.

The present paper deals with nonholonomic mechanical systems such as the knife

edge, nonholonomic skater, rolling disk, nonholonomic bicycle and elastic curves. The

states of each of the aforementioned systems can be viewed as points on a certain

coordinate space, and their motion corresponds, due to the constraints, to a curve

tangent to the distribution defined by the constraints. In all of the cases presented here

the constraints are given by non-integrable one-forms, with non-integrable induced

distributions. The global connectivity by curves tangent to the distribution is either

implied by the bracket generating property of the distribution or is shown by some

direct ad-hoc methods. This can be interpreted as steering the system from a given

initial position to a final position; for instance, in the case of the bicycle this becomes

a common parking problem.

Another important problem is to find the optimal energy curve between two

given states. In other words, “how do you park your bicycle” with a minimum energy

effort? This problem is more difficult than the connectivity problem and it might

have multiple solutions, depending on how the “optimality” is defined. If the optimal

curves are solutions of the variational problem given by a Lagrangian with constraints,

then they are regular sub-Riemannian geodesics of the associated sub-Riemannian

geometry.

The paper is organized as follows. Section 2 deals with skating as a 3-dimensional

sub-Riemannian problem endowed with a distribution of rank 2. Section 3 character-

izes the motion of a skater with two knife edges which slides on a horizontal plane.

The associated sub-Riemannian geometry satisfies the connectivity property but it is

not bracket generating; this is a counterexample for the converse of Chow’s theorem.

In section 4 we recall a variational approach of elastic curves, which are related to
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the optimal trajectory of a skater. Section 5 deals with the nonholonomic problem of

the rolling disk and its optimal solution. Finally, Section 6 associates a nonholonomic

geometry to the motion of a bicycle.

2. Skating. Consider a convex blade tangent to a horizontal plane at the point

(x, y) and making an angle θ with the x-axis, see Fig.1(a). This kind of nonholonomic

system is known in the literature under the name of knife edge, see [1]. We shall

treat this problem from the sub-Riemannian point of view only. This means that the

inertia momenta, gravitational forces or damping forces are not taken into account,

and the only control we have is on the velocity given by some constraint imposed in

the tangent bundle.

The knife edge can be parameterized by three parameters (x, y, θ) ∈ R
2 × S

1. On

this 3-dimensional manifold we shall introduce a rank 2 distribution H defined by the

velocity constraint. Let γ(s) =
(

x(s), y(s)
)

be the trace of the contact point. The

relations ẋ = |γ̇| cos θ, ẏ = |γ̇| sin θ lead to the constraint ẋ sin θ − ẏ cos θ = 0. This

induces the one-form ω = sin θ dx−cos θ dy, which defines the distribution H = kerω.

One may check the condition

ω ∧ dω = −dx ∧ dy ∧ dθ 6= 0,

implies that H is a contact distribution.

The trajectory of the knife edge on the space R
2 × S

1 corresponds to a curve

tangent to the distribution H. Consider the vector fields

X = cos θ ∂x + sin θ ∂y, Y = ∂θ.

Since ω(X) = ω(Y ) = 0, then the pair {X,Y } forms a basis for the distribution H.

The first vector field describes the position in the plane while the later describes the

rotation. Their bracket is the angular momentum

Z = [X,Y ] = sin θ ∂x − cos θ ∂y = ẏ ∂x − ẋ ∂y 6= 0.

Since {X,Y, Z} generate the tangent space of R
2 × S

1 at each point, then the bracket

generating condition holds and the distribution is of step 2. Since ω(Z) = 1, then

Z is a contact vector field for the contact distribution H. By Chow’s connectivity

theorem, there is a piece-wise smooth curve tangent to H joining any two given points.

However, we shall prove next that the attribute “piece-wise” can be removed.

Proposition 2.1. Given any two points (x0, y0, θ0), (x1, y1, θ1) ∈ R
2 × S

1, there

is a smooth trajectory of the knife edge joining these points.

Proof. The previous result can be restated in the following slightly stronger

version: Given two points A = (x0, y0), B = (x1, y1) ∈ R
2 and two unit vectors

vA ∈ TAR
2, vB ∈ TBR

2, there is a plane curve that joins the points A and B, having

the initial and final velocities vA and vB , respectively, see Fig.1(b).
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(a) (b)

Fig. 1. (a) The parameter space of a skate is R
2 × S

1; (b) Connectivity by smooth curves.

Let s denote the arc length parameter. We shall construct a smooth curve
(

x(s), y(s), θ(s)
)

in R
2 × S

1 tangent to the distribution H satisfying the boundary

conditions

x(0) = x0, y(0) = y0, θ(0) = θ0, x(τ) = x1, y(τ) = y1, θ(τ) = θ1.

Using a translation, we may assume that all the values x0, y0, x1, y1 are non-zero. Let

the curve be parameterized by the interval [0, τ ]. Choose the first two components of

the curve to be given by

x(s) = x0

(τ − s

τ

)α

+ x1

( s

τ

)β

(2.1)

y(s) = y0

(τ − s

τ

)α′

+ y1

( s

τ

)β′

.(2.2)

The curve joins the points A and B in time τ and depends on the real parameters

α, α′, β, and β′. Differentiating yields

ẋ(0) = −αx0

τ
, ẋ(τ) =

βx1

τ

ẏ(0) = −α
′y0
τ

, ẏ(τ) =
β′y1
τ

.

Comparing with

ẋ(0) = cos θ0, ẋ(τ) = cos θ1, ẏ(0) = sin θ0, ẏ(τ) = sin θ1
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we determine the following values for the parameters

α = −τ cos θ0
x0

, α′ = −τ sin θ0
y0

, β =
τ cos θ1
x1

, β′ =
τ sin θ1
y1

.

Substituting in (2.1–2.2) yields the expression for the components x(s) and y(s). The

component θ(s) is obtained from the velocity constraint ẋ sin θ− ẏ cos θ = 0, and it is

given by θ(s) = tan−1 ẏ(s)
ẋ(s) , with x(s) and y(s) considered previously. The conditions

θ(0) = θ0 and θ(τ) = θ1 are automatically satisfied by construction.

The sub-Riemannian metric. If c(s) =
(

x(s), y(s), θ(s)
)

is a curve tangent to the

contact distribution H, then its velocity can be written as

ċ = ẋ∂x + ẏ∂y + θ̇∂θ = (ẋ cos θ + ẏ sin θ)X + θ̇Y.

Choosing a metric on H in which the vector fields {X,Y } are orthonormal, the length

of the velocity becomes

|ċ| =

√

(ẋ cos θ + ẏ sin θ)2 + θ̇2.

The kinetic energy along a curve measured with respect to the previous sub-Rieman-

nian metric, given that the curve is tangent to the distribution H, leads to the following

Lagrangian with constraint

L =
1

2
θ̇2 +

1

2
(ẋ cos θ + ẏ sin θ)2 + λ(ẋ sin θ − ẏ cos θ),

where λ is a Lagrange multiplier function.

Solving the Euler-Lagrange system. Let ξ = ẋ cos θ+ ẏ sin θ. Then the derivative with

respect to θ is ξ′ = −(ẋ sin θ−ẏ cos θ). Since ∂L
∂ẋ = ξ cos θ+λ sin θ, ∂L∂ẏ = ξ sin θ−λ cos θ

and ∂L
∂x = ∂L

∂y = 0, the corresponding Euler-Lagrange equations become

ξ cos θ + λ sin θ = C1

ξ sin θ − λ cos θ = C2,

with C1, C2 constants. Solving for ξ and λ yields

ξ = C1 cos θ + C2 sin θ

λ = C1 sin θ − C2 cos θ,

which implies ξ′ = −λ. Then ∂L
∂θ = ξξ′ + λξ = 0. The variational equation corre-

sponding to θ becomes θ̈ = 0, with the linear solution θ(s) = as + b = θ1−θ0
τ s + θ0.

Writing ξ in two equivalent ways and using the nonholonomic constraint, we arrive

at the following system

ẋ cos θ + ẏ sin θ = C1 cos θ + C2 sin θ

ẋ sin θ − ẏ cos θ = 0.
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Fig. 2. The trace of a skate in optimal motion with a = 1.5, b = 2, s ∈ [−2π, 2π]: (a) The

case C1 = 1, C2 = 1; (b) The case C1 = −1, C2 = 1; (c) The case C1 = −1, C2 = −1; (d) The case

C1 = 1, C2 = −1;

Solving for the velocity components yields

ẋ = C1 cos2 θ + C2 sin θ cos θ

ẏ = C2 sin2 θ + C1 sin θ cos θ.

Integrating we get

x(s) = x0 +
1

2
C1s+

1

2a
sin(as)

(

C1 cos θ + C2 sin θ
)

y(s) = y0 +
1

2
C2s+

1

4a
C2 sin(2b) − C2

4a
sin(2θ) +

1

2a
C1 sin(as) sin θ.

The values of the constants C1 and C2 are determined from the boundary conditions

x(τ) = x1, y(τ) = y1. The parametric plot of the solution is represented in Fig.2 for

different signs of the constants C1 and C2.

3. The nonholonomic skater. A skater is a bicycle-type vehicle with skates

instead of wheels that slide on a horizontal plane, see Fig.3(a). Both the front and

rear skates are convex sharp blades tangent to the plane. The skater is vertical all

the time to the skating plane. The distance between the contact points is constant,

equal to a. Just the front skate can rotate in a vertical plane, while the rear one is

fixed. The contact points describe two curves:

• the front curve c(s), which is the trace of the contact point of the front skate

and

• the rear curve γ(s), which is the trace of the contact point of the rear skate.

We shall start the analysis of the motion by dealing with the relationship between

the rear and the front curves.

Proposition 3.1. (i) Given the rear curve γ(s), there is a unique front curve

c(s) associated with γ. This curve starts at the point c(0) = γ(0) + aγ̇(0) with the

velocity ċ(0) = γ̇(0) + aγ̈(0).

(ii) Given the front curve c(s) and a point P in the plane, with dist(P, c(0)) = a,

there is a unique rear curve γ(s) associated with c(s), starting at P .
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(a) (b)

Fig. 3. (a) The front curve c(s) and the rear curve γ(s) of a skater; (b) The angular parameters

θ and ψ.

Proof. (i) Let s denote the arc length parameter along the rear curve γ. The

contact point c(s) of the front blade can be obtained by a shift in the direction γ̇(s)

of the rear contact point

(3.1) c(s) = γ(s) + aγ̇(s).

(ii) The components of the curve γ = (γ1, γ2) satisfy the linear ODE

aγ̇k(s) + γk(s) = ck(s), k = 1, 2,

with the solution

γk(s) =
1

a
e−

s
a

∫ s

0

e
w
a ck(w) dw + γk(0)e−

s
a , k = 1, 2,

where P = γ(0).

Particular cases. If the front curve c(s) is a line, then the rear curve γ(s) is a tractrix

curve.

When the front curve c(s) is an arc of circle of radius R, then the rear curve is

an arc of circle of radius r =
√
R2 − a2, see Fig.4(b). If R = a, then the rear curve

degenerates to a point.
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The total energy. In this subsection the total energy of the skater is defined to be the

sum of the energies of the front and rear curves

(3.2) E =
1

2

∫ τ

0

(

|ċ(s)|2 + |γ̇(s)|2
)

ds.

The optimum motion is defined to be the motion for which the total energy is mini-

mum. If s denotes the arc length along the rear curve, then (3.1) yields

(3.3) |ċ(s)|2 = |γ̇(s) + aγ̈(s)|2 = 1 + a2κ2
γ(s),

where we used that γ̇ ⊥ γ̈ and we denoted the curvature along γ by κγ . Then the

total energy (3.2) becomes

(3.4) E = τ +
a2

2

∫ τ

0

κ2
γ(s) ds.

As it was first inferred by D. Bernoulli, the elastic potential of a lamina is given by

the integral of the square of its curvature. Then the quantity (3.4) has the mean of

potential elastic energy. We shall come back to this problem shortly.

Boundary values. Consider the endpoints

(3.5) c(0) = A1, γ(0) = B1, c(τ) = A2, γ(τ) = B2

given such that

|c(0) − c(τ)| = |γ(0) − γ(τ)| = a.

Since

γ̇(0) =
1

a

(

c(0) − γ(0)
)

γ̇(τ) =
1

a

(

c(τ) − γ(τ)
)

,

the previous conditions are equivalent with providing the positions and velocities at

the end points of the rear curve γ

(3.6) γ(0) = B1, γ(τ) = B2, γ̇(0) = v1, γ̇(τ) = v2,

with |v1| = |v2| = 1. Finding the optimum solution for the variational problem (3.2)

with the boundary values (3.5) is equivalent with finding the minimum of the energy

(3.4) subject to conditions (3.6). This can be also stated as finding the minimum

elastic potential
∫ τ

0
1
2κ

2(s) ds for a curve passing through two given points with pre-

scribed end-point velocities and having a fixed length τ . These curves are known in

the literature under the name of elastica curves and they have been characterized by

Euler. For the sake of completeness a variational approach of elastica will be included

in the section 4.
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(a) (b)

Fig. 4. (a) The case θ = ψ (b) The case θ = ψ − π

2
.

The length of the front curve. Using (3.3) we can write a formula for the length of

the front curve

ℓ(c) =

∫ τ

0

|ċ(s)| ds =

∫ τ

0

√

1 + a2κ2
γ(s) ds ≥ τ = ℓ(γ),

with equality if and only if κγ = 0, i.e. when γ is a line. It follows that in this case

c is also a line. The aforementioned inequality implies that the front curve is at least

as long as the rear curve.

The nonholonomic constraints. Consider the front and rear curves having the follow-

ing components in a Cartesian system of coordinates

c(s) =
(

u(s), v(s)
)

, γ(s) =
(

x(s), y(s)
)

,

where s is the arc length along γ. Let θ and ψ be the angles made by the velocities

γ̇ and ċ with the x-axis, see Fig.3(b). From u̇ = |ċ| cosψ, v̇ = |ċ| sinψ and ẋ = cos θ,

ẏ = sin θ yields the following constraints on the front and rear velocities:

(3.7) u̇ sinψ = v̇ cosψ, ẋ sin θ = ẏ cos θ.

Writing the relation c = γ + aγ̇ on components

u = x+ aẋ = x+ a cos θ

v = y + aẏ = y + a sin θ,
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and differentiating with respect to s yields

u̇ = ẋ− a sin θ θ̇(3.8)

v̇ = ẏ + a cos θ θ̇.(3.9)

Substituting in the first relation of (3.7) we obtain

(3.10) sinψ ẋ− cosψ ẏ = a cos(θ − ψ) θ̇.

It follows that the motion of the skater corresponds to the curve
(

x(s), y(s), θ(s), ψ(s)
)

on the parameters space R
2 × S

1 × S
1 satisfying the following Pfaff system

sinψ dx− cosψ dy = a cos(θ − ψ) dθ(3.11)

sin θ dx− cos θ dy = 0.(3.12)

The associated sub-Riemannian geometry. Consider the one-forms

ω1 = sinψ dx− cosψ dy − a cos(θ − ψ) dθ(3.13)

ω2 = sin θ dx− cos θ dy,(3.14)

and define the rank 2 distribution H = kerω1 ∩ kerω2. The motion of the skater

corresponds to curves in R
2 × S

1 × S
1 tangent to the distribution H.

The case θ = ψ. In this case the tangent vectors ċ and γ̇ are collinear, so ċ = λγ̇,

with λ 6= 0. Since ċ = γ̇ + aγ̈, then

a|γ̈|2 = 〈ċ, γ̈〉 − 〈γ̇, γ̈〉 = 0,

where s is the arc length along γ. It follows that γ(s) is a line. Then c(s) is also a

line with the same support as γ, see Fig.4(a).

The case θ 6= ψ. Multiplying the first equation of (3.11) by sin θ and the second

equation by sinψ, subtracting yields

dy = a sin θ cot(ψ − θ) dθ,

as long as ψ 6= θ. Multiplying the first equation of (3.11) by cos θ and the second

equation by cosψ, subtracting we obtain

dx = a cos θ cot(ψ − θ) dθ.
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Then the distribution can be written equivalently as H = ker η1 ∩ ker η2, with the

one-forms

η1 = dx− a cos θ cot(ψ − θ) dθ(3.15)

η2 = dy − a sin θ cot(ψ − θ) dθ.(3.16)

In order to find a basis {X1, X2} of the distribution H, we may chose X1 = ∂ψ since

ηi(X1) = 0, i = 1, 2. Let the second vector field be X2 = α∂x + β∂y + ∂θ, with the

components α and β determined by the conditions η1(X2) = η2(X2) = 0. Then

α = a cos θ cot(ψ − θ), β = a sin θ cot(ψ − θ).

Hence the distribution H is spanned by the linear independent vector fields

X1 = ∂ψ(3.17)

X2 = a cot(ψ − θ)
(

cos θ∂x + sin θ∂y
)

+ ∂θ.(3.18)

The non-integrability of distribution H. Let V = cos θ∂x+sin θ∂y. SinceX1 commutes

with V and ∂θ, we have

X3 = [X1, X2] = [X1, a cot(ψ − θ)V + ∂θ] = X1

(

a cot(ψ − θ)
)

V

= −a csc2(ψ − θ)V 6= 0,

so H is not integrable. If the vector fields X1, X2 and their iterated brackets span the

tangent space of R
2×S

1×S
1 at each point, then the distribution satisfies the bracket

generating condition. In our case {X1, X2, X3} are linear independent vector fields,

but further iterations lead to vector fields proportional to X3

[X1, [X1, X2]] = 2a csc3(φ− θ)V

[X1, . . . [X1, [X1, X2]] . . . ] = −a∂kψ(csc2(ψ − θ))V := f(ψ − θ)V

[X2, [X1, . . . [X1, [X1, X2]] . . . ]] = [a cot(ψ − θ)V + ∂θ, fV ] = (∂θf)V.

It follows that the distribution is not bracket generating, and hence Chow’s theorem

cannot be applied in this case. However, the connectivity property might still hold. It

suffices to consider the parking motion of the skater between any two given positions.

If this can be always done, then this provides a counterexample for the converse of

Chow’s theorem (i.e. there are distributions satisfying the connectivity property which

are not bracket generating). Since the literature is short on these type of examples,

we shall include next an ad-hoc construction of such a piece-wise smooth curve joining

any two given points in the parameters space.

The parking problem. Let A0, A1, B0, B1 be points in the plane such that |A0B0| =

|A1B1| = a. The parking problem answers the following question: Is it possible for
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the skater to start from a given initial position defined by the contact points A0, B0

and move continuously into the final position given by the contact points A1, B1?

The answer is positive. Let θ0 and θ1 be the angles made by the rays A0B0

and A1B1 with the x-axis. Giving the points (A0, B0) and (A1, B1) is equivalent

with providing the boundary values (x0, y0, θ0) and (x1, y1, θ1). From Proposition 2.1

there is a rear curve γ(s) =
(

x(s), y(s)
)

and an angular function θ(s) which join the

given points (x0, y0, θ0) and (x1, y1, θ1). Proposition 3.1 assures the existence and

uniqueness of the front curve c(s) between the points B0 and B1. This shows that

the parking problem has always solutions.

The only parameter we did not take care of yet is ψ, which is the angle between

the front blade and the x-axis. This parameter can be adjusted by keeping the contact

points of both front and rear blades fixed and steering the front blade by the desired

angle such that at the beginning and at the end the angle has the two given values

ψ0 and ψ1. This way, one obtains a piece-wise smooth curve
(

x(s), y(s), θ(s), ψ(s)
)

with end points (x0, y0, θ0, ψ0) and (x1, y1, θ1, ψ1). The associated sub-Riemannian

manifold is a counterexample for the converse of Chow’s theorem.

The sub-Riemannian metric. The distribution H will be endowed with a metric in

which the vector fields X1, X2 are orthonormal. This will be the sub-Riemannian

metric associated with our problem. In order to see how this metric acts, we consider

a curve λ(s) =
(

x(s), y(s), θ(s), ψ(s)
)

on the coordinate space R
2 × S

2 × S
1, which is

tangent to the distribution H. Using the constraints (3.15–3.16), the velocity vector

becomes

λ̇ = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ

= a cos θ cot(ψ − θ)θ̇∂x + a sin θ cot(ψ − θ)θ̇∂y + ψ̇∂ψ

= θ̇X2 + ψ̇X1,

so the controls of the curve λ are the angular velocities θ̇ and ψ̇. Using the orthonor-

mality of {X1, X2} we have |λ̇(s)|2 = θ̇2 + ψ̇2. This is used to introduce the notion of

the sub-Riemannian energy along the trajectory λ by

(3.19) I =
1

2

∫ τ

0

|λ̇(s)|2 ds =
1

2

∫ τ

0

(

θ̇(s)2 + ψ̇(s)2
)

ds.

The optimal parking problem. Among all the parking motions with the initial points

A1, B1 and final points A2, B2, find the one which minimizes the action integral (3.19)!

Since the motion occurs along curves tangent to the distribution H the dynamics

are described by the following Lagrangian with constraints

L =
1

2

(

θ̇(s)2 + ψ̇(s)2
)

+ µ1

(

ẋ− a cos θ cot(ψ − θ)θ̇
)

+ µ2

(

ẏ − a sin θ cot(ψ − θ)θ̇
)

.
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Since
∂L

∂x
=

∂L

∂y
= 0, the Lagrange multipliers µ1 and µ2 are constant along the

solutions of the Euler-Lagrange equations. The variational equations are complicated

and they do not obviously seem to be integrable by quadratures.

4. Elastic curves. As it was for the first time noticed by D. Bernoulli, the

elastic potential energy of a curve c : [0, τ ] → R
2 is given by the integral of the

square of its curvature
∫ τ

0 κ
2(s) ds. A curve which minimizes the previous integral is

called an elastic curve. Finding all the planar elastic curves of a fixed length passing

through two given points and having prescribed endpoint velocities was first asked by

Bernoulli and then after solved by Euler, who provided a complete classification of

planar elastic curves into 9 distinct types, see [6].

We came across elastic curves when we discussed the optimum motion of a skater

on a plane. The rear curve of the skater in optimal motion describes an elastic

curve. We shall provide next a variational method approach involving nonholonomic

constraints. If the curve c(s) =
(

x(s), y(s)
)

is considered unit speed and θ(s) is

the angle made by the velocity ċ(s) with the x-axis, then the curvature satisfies

κ2(s) = θ̇2(s). Considering the velocity constraints ẋ = cos θ and ẏ = sin θ, the

problem of finding the elastic curves of length τ can be solved by considering the

integral action
∫ τ

0 L(x, y, θ, ẋ, ẏ, θ̇) ds with the Lagrangian

(4.1) L(x, y, θ, ẋ, ẏ, θ̇) =
1

2
θ̇2 + λ1(ẋ− cos θ) + λ2(ẏ − sin θ),

with λ1, λ2 Lagrange multipliers. The Euler-Lagrange equations

θ̈ = λ1 sin θ − λ2 cos θ(4.2)

λ̇1 = 0(4.3)

λ̇2 = 0(4.4)

lead to the standard pendulum equation

(4.5) ü+ a2 sinu = 0

by substituting a2 =
√

λ2
1 + λ2

2 and u = θ + π − α, with α = tan−1(λ2/λ1). The

solution of the equation (4.5) can be represented in terms of elliptic functions (see [4],

vol. I, p.142)

sin
u(s)

2
= k sn(as, k),

where k = sin γ
2 is the elliptic modulus and γ = maxu(s) is the maximal amplitude

of the swing. The value of the curvature is given by

κ(s) =
dθ

ds
=
du

ds
= 2kcn(s, k),
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and then the minimum value of the elastic potential becomes

∫ τ

0

1

2
κ2(s) ds = 2k2

∫ τ

0

(1 − sn2(s, k)) ds = 2τ(k2 − 1) + 2E(τ, k)

= 2E(τ, k) − 2τk′
2
,(4.6)

where we used the following formula of [5], p.62:

k2

∫

sn2(s, k) ds = s− E(s, k),

where E(·, k) is the Jacobi epsilon function defined by

E(s, k) =

∫ s

0

dn2(u, k) du, k ∈ (0, 1),

and k2 + k′
2

= 1. Integrating in the constraints ẋ = cos θ, ẏ = sin θ yields the plane

elastic curve c(s) =
(

x(s), y(s)
)

, see [6]

x(s) = s− 2E(am(s, k), k)(4.7)

y(s) = −2kcn(s, k),(4.8)

where am(s, k) is defined as the value of φ such that

s =

∫ φ

0

dt
√

1 − k2 sin2 t
.

This variational treatment of plane elastic curves can be found also in [4], vol I, p.142.

Elastica curves appear naturally in other domains of Physics, as it was noticed in

1800’s by Laplace and Maxwell who showed that the shape of the cross section of the

capillary surface in a cylindrical tube is an elastic curve, see [7].

Elastic curves in the space. A similar approach can be applied to find elastic curves in

R
3. The curvature of a unit speed space curve c(s) =

(

x(s), y(s), z(s)
)

can be written

in terms of spherical coordinates as

κ2(s) = ẍ2(s) + ÿ2(s) + z̈2(s)

= θ̇2(s) + sin2 θ(s)ψ̇2(s),(4.9)

where θ and ψ are the angles made by the velocity ċ with the x-axis and the yz-plane,

respectively. Using the constraints

(4.10) ẋ = cos θ, ẏ = sin θ cosψ, ż = sin θ sinψ,

we set up the following Lagrangian

L =
1

2
(θ̇2 + sin2 θψ̇2) + λ1(ẋ− cos θ) + λ2(ẏ − sin θ cosψ) + λ3(ż − sin θ sinψ).
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Since dσ2 = dθ2 + sin2 θdψ2 is the canonical Riemannian metric on the sphere S
2,

the first term of the aforementioned Lagrangian is the kinetic energy induced by the

natural metric of S
2.

The Euler-Lagrange equations. Since L does not depend explicitly on x, y and z, it

follows that the Lagrange multipliers λ1, λ2, and λ3 are constants. The variational

equations satisfied by θ and ψ are

θ̈ = sin θ(cos θψ̇2 + λ1) − cos θ(λ2 cosψ + λ3 sinψ)

d

ds
(sin2 θ ψ̇) = sin θ(λ2 sinψ − λ3 cosψ).

Let Λ =
√

λ2
2 + λ2

3 and ξ = tan−1(λ3/λ2). Then the previous system takes the form

θ̈ = sin θ(cos θψ̇2 + λ1) − Λ cos θ cos(ψ − ξ)

d

ds
(sin2 θ ψ̇) = Λ sin θ sin(ψ − ξ),

whose method of exact integration is still unknown to the authors. The curve (x, y, z)

is obtained by integrating in the constraints (4.10).

5. The rolling disk. The rolling coin problem is a classical problem of non-

holonomic mechanics. In the following we shall investigate this problem from the

sub-Riemannian geometry point of view by following the reference [2].

A disk of radius R = 1 rolls on a horizontal plane and is constrained to be vertical

all the time. The position of the disk can be parameterized by four coordinates

(x, y, ψ, φ) ∈ R
2 × S

1 × S
1, where

• (x, y) are the coordinates of the center of the disk;

• φ is the angle made by some fixed radius on the disk makes with the vertical;

• ψ is the angle made by the plane of the disk with the x-axis, see Fig.5(a).

The motion of the disk can be described by a curve on the space R
2×S

1×S
1 which is

tangent to a certain non-integrable distribution as we shall describe in the following.

In order to find the nonholonomic constraints which define the distribution, we shall

equate the components of the instantaneous velocity v(t) = Rφ̇(t) against the velocity

components of the trace curve
(

x(t), y(t)
)

to get

ẋ = v cosψ = Rφ̇ cosψ, ẏ = v sinψ = Rφ̇ sinψ.

These constraints define the rank 2 distribution H = kerω1 ∩ kerω2 in R
2 × S

1 × S
1,

where

ω1 = dx−R cosψ dφ, ω2 = dy −R sinψ dφ

are two independent one-forms. One may check that the linear independent vector

fields

X1 = ∂ψ, X2 = R(cosψ ∂x + sinψ ∂y) + ∂φ
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(a) (b)

Fig. 5. (a) The parameters (x, y, φ, ψ) of a disk rolling on a plane; (b) By Chow’s theorem

there is a curve connecting (x0, y0, φ0, ψ0) and (x1, y1, φ1, ψ1).

generate the distribution H. Recall the assumption made on the disk radius that

R = 1. In order to check the bracket generating condition, we introduce two other

vector fields

X3 = − sinψ ∂x + cosψ ∂y, X4 = −(cosψ ∂x + sinψ ∂y)

which satisfy the following commutation relations

(5.1) [X1, X2] = −[X1, X4] = X3, [X1, X3] = X4, [X2, X3] = [X2, X4] = 0.

Since X1, X2, X3, X4 are linearly independent, they span the tangent space of R
2 ×

S
1 × S

1 at each point, so the bracket generating condition holds, and by Chow’s

theorem we have the following connectivity result, see Fig.5(b):

Given two points (x0, y0, φ0, ψ0), (x1, y1, φ1, ψ1) in R
2 × S

1 × S
1, there is at least

one piece-wise smooth trajectory of the disk that starts with the contact point (x0, y0)

and initial angles ψ0, φ0 and ends at the contact point (x1, y1) having the final angles

ψ1, φ1, respectively.

Like in the case of the knife edge, the attribute “piece-wise” can be omitted.

One can construct a smooth trajectory between the end points in the following way.

The angular velocity can be chosen to be constant, i.e φ = as + b, with b = φ0,

a =
φ1 − φ0

τ
. Then the nonholonomic constraints become ẋ = a cosψ, ẏ = a sinψ,
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(a) (b)

Fig. 6. The disk trajectory for |µ| = 0: (a) The case ξ2 6= 0; (b) The case ξ2 = 0.

and hence dy
dx = tanψ. It suffices to choose any smooth curve (x, y) with x(0) = x0,

y(0) = y0, x(τ) = x1, y(τ) = y1, with the initial and final slopes tanψ0 and tanψ1,

respectively, see Fig.1(b). One construction is suggested by formulas (2.1–2.2). The

function ψ can be chosen as ψ(s) = tan−1 ẏ(s)
ẋ(s) .

Since two brackets are needed to generate all the missing directions, the commu-

tation relations (5.1) imply that the distribution H is step 3 at each point.

We shall endow H with the sub-Riemannian metric in which the vector fields X1

and X2 are orthonormal. Suppose c(t) =
(

x(t), y(t), ψ(t), φ(t)
)

is a curve tangent to

the distribution H. Then its velocity can be written as

ċ(t) = ψ̇X1 + φ̇X2 + (ẋ− φ̇ cosψ)∂x + (ẏ − φ̇ sinψ)∂y

= ψ̇X1 + φ̇X2.

It follows that the length of the velocity vector of the curve c : [0, T ] → R
2 × S

1 × S
1

with respect to the sub-Riemannian metric is |ċ(t)| =
√

ψ̇2(t) + φ̇2(t). Then the

dynamics of the disk is described by the following Lagrangian with constraints

(5.2) L =
1

2

(

ψ̇2(t) + φ̇2(t)
)

+ µ1(ẋ− φ̇ cosψ) + µ2(ẏ − φ̇ sinψ).

In order to find the motion of the disk with the smallest energy one needs to solve
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the Euler-Lagrange system of equations

∂L

∂ẋ
= 0 =⇒ µ1 = constant

∂L

∂ẏ
= 0 =⇒ µ2 = constant

ψ̈ = φ̇(µ1 sinψ − µ2 cosψ)

d

ds
(φ̇− µ1 cosψ − µ2 sinψ) = 0 =⇒ φ̇ = ξ1 + µ1 cosψ + µ2 sinψ,

with ξ1 constant. Eliminating φ̇ from the last two equations yields the following

nonlinear equation in ψ

ψ̈ = (ξ1 + µ1 cosψ + µ2 sinψ)(µ1 sinψ − µ2 cosψ).

This equation can be integrated by using elliptic functions. We shall follow the in-

tegration presented in [2]. Let |µ| =
√

µ2
1 + µ2

2. We can write the formula for the

optimal solutions in the cases |θ| 6= 0 and |θ| = 0. In the first case, elliptic function

machinery is used, while in the later just usual trigonometric functions will suffice to

express the solution.

The case |µ| 6= 0. In order to write down the optimal solution, we need first to review

a list of notations used in the aforementioned reference.

ξ1 = constant, ω = tan−1(θ1/θ2), A =
ξ1
|θ| , B =

1 + ξ1
|θ| , T =

1

|θ|

F =

∫ A+sinω

0

dβ
√

1 − (β −A)2
√

T 2 − β2

D =
−2|θ|

√

(1 + |θ|)2 − ξ21
, k = 2

√

T

(1 + T 2)2 −A2

L(t) =
F + |θ|t
D

, α =
2

1 +A+ T
, Ω =

1 −B2

2snL(t)− (1 +B)
,

where the elliptic sine of modulus k is defined by

sn−1w =

∫ w

0

dt
√

(1 − t2)(1 − k2t2)
.

Then the components ψ and φ are given by the following explicit formulas

ψ(t) = sin−1

(

1 −B2

2 snL(t)− (1 +B)
−B

)

− ω

φ(t) = (ξ1 − |θ|B)t +D(B − 1)

∫ (F+|θ|t)/D

F/D

du

1 − α snu
.



NONHOLONOMIC SYSTEMS AND SUB-RIEMANNIAN GEOMETRY 311

The integral in the last term can be expressed using the elliptic function cd and theta

functions, see reference [5], p. 92.

The other two components of the solution are obtained by integrating in the

nonholonomic constraints

x(t) =

∫ t

0

φ̇ cosψ =

∫ t

0

(

ξ1 + |θ|(Ω(s) −B)
)(

√

1 − Ω(s)2 cosω + Ω(s) sinω
)

ds,

y(t) =

∫ t

0

φ̇ sinψ =

∫ t

0

(

ξ1 + |θ|(Ω(s) −B)
)(

Ω(s) cosω −
√

1 − Ω(s)2 sinω
)

ds.

Unfortunately this is the best we can do in the matter of finding the components.

The case |µ| = 0. Since µ1 = µ2 = 0, integrating in the Euler-Lagrange equations

yields

φ(s) = ξ1s,

ψ(s) = ξ2s,

x(s) = x0 +
ξ1
ξ2

sin(ξ2s),

y(s) = y0 −
ξ1
ξ2

cos(ξ2s),

with ξ1, ξ2 constants. In this case the trajectory of the contact point M
(

x(s), y(s)
)

is

a circle of radius |ξ1/ξ2|, centered at (x0, y0), see Fig.6(a). If ξ2 = 0, then φ(s) = ξ1s

and ψ(s) = 0, case in which the disk roles along the following straight line, see Fig.6(b)

x(s) = x0 + ξ1s, y(s) = y0.

Remark 5.1. If choose φ̇ = 1 in the Lagrangian (5.2) we obtain the Lagrangian

(4.1) up to an additive constant. This might state a relationship between optimum

constant angular velocity rolling curves and plane elastic curves.

The vertical rolling oval wheel. This is a generalization of the rolling disk problem

to a closed, simple, plane, convex curve, i.e. an oval curve, which rolls without

slipping on a horizontal plane. Let s denote the arc length along the oval curve.

The velocity vector along the contact curve of the oval with the plane is given by

v = (ẋ, ẏ) = |v|(cosψ, sinψ), where ψ is the angle made by the plane of the oval

π with the x-axis, see Fig.7. Since the speed is given by |v| = ds
dt , projecting on

components yields the following rolling constraints

dx = cosψ ds, dy = sinψ ds.

The central angle parameter φ from the rolling disk is replaced here by the angle
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Fig. 7. An oval wheel rolling on a horizontal plane.

parameter θ which defines the curvature along the oval by κ =
dθ

ds
. Then the afore-

mentioned rolling constraints become

κdx = cosψ dθ, κdy = sinψ dθ.

The rolling motion of the oval curve can be considered as a curve on the space

(x, y, θ, ψ) ∈ R
2 × S

1 × S
1, tangent to the distribution H = kerω1 ∩ ω2, with

ω1 = κdx− cosψ dθ, ω2 = κdy − sinψ dθ.

The following vector fields

X1 = κ∂ψ, X2 = cosψ ∂x + sinψ ∂y + κ∂θ.

generate the distribution H. It worth to note that the oval property κ > 0 is essential

here. The aforementioned vector fields have the bracket generating property, since

the commutation relations (5.1) hold with

X3 = κ
(

− sinψ ∂x + cosψ ∂y
)

, X4 = −κ
(

cosψ ∂x + sinψ ∂y
)

,

and {X1, X2, X3, X4} are linearly independent. Hence by Chow’s theorem, the oval

wheel can be moved between any two given positions A0 = (x0, y0, θ0, ψ0) and A1 =

(x1, y1, θ1, ψ1) in the space R
2 × S

1 × S
1.

6. The nonholonomic bicycle. This section deals with the motion of a bicycle

treated as a problem with nonholonomic constraints. This is a mechanical system

similar to a skater with the knife edges replaced by circular wheels of radii r and R.

Besides the parameters (x, y, θ, ψ) ∈ R
2 × S

1 × S
1 that describe the dynamics of a
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(a) (b)

Fig. 8. (a) The parametrization of a bicycle; (b) bicycle with unequal radii.

skater, in the case of a bicycle two additional angle parameters are needed (φf , φr) ∈
S

1×S
1. They are angular parameters which parameterize the rotation of the front and

rear wheels, respectively, see Fig.8(a). Hence the motion of a bicycle is described by

a curve
(

x(s), y(s), θ(s), ψ(s), φf (s), φr(s)
)

on the 6-dimensional space R
2 ×S

1×S
1×

S
1×S

1. The distance between the centers of the wheels is constant and is denoted by

a. The formulas from the nonholonomic skater regarding the front and rear curves

c = (u, v) and γ = (x, y) hold also in the case of a bicycle, but in this case they are

the traces of the contact points of the front and the rear wheels, respectively

u̇ sinψ = v̇ cosψ, ẋ sin θ = ẏ cos θ.

Differentiating in (u, v) = (x, y) + a(cos θ, sin θ) yields

u̇ = ẋ− a sin θ θ̇, v̇ = ẏ + a cos θ θ̇.(6.1)

The rolling constraints for the rear and front wheels are

ẋ = r cos θ φ̇r, ẏ = r sin θ φ̇r(6.2)

u̇ = R cosψ φ̇f , v̇ = R sinψ φ̇f .(6.3)

Since u and v are not among the parameters we shall eliminate them by substituting

(6.1) in (6.3)

R cosψ φ̇f = ẋ− a sin θ θ̇

R sinψ φ̇f = ẏ + a cos θθ̇.
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The bicycle motion can be described by the following 3 pairs of constraints: one pair

for each of the trace curves c and γ, and one for describing the rotation of the wheels.

After an easy algebraic manipulation we obtain the following equivalencies:

(6.4)

{

ẋ = r cos θ φ̇r

ẏ = r sin θ φ̇r
⇐⇒

{

ẋ cos θ + ẏ sin θ = r φ̇r

ẋ sin θ − ẏ cos θ = 0.

(6.5)

{

u̇ = R cosψ φ̇f

ẏ = R sinψ φ̇f
⇐⇒

{

ẋ cosψ + ẏ sinψ + aθ̇ sin(ψ − θ) = R φ̇f

ẋ sinψ − ẏ cosψ − aθ̇ cos(ψ − θ) = 0.

(6.6)

{

u̇ sinψ = v̇ cosψ

ẋ sin θ = ẏ cos θ
⇐⇒

{

ẋ sinψ − ẏ cosψ − aθ̇ cos(ψ − θ) = 0

ẋ sin θ − ẏ cos θ = 0.

The equivalent systems of the right side are obtained by adding and subtracting the

equations of the left side, after they have been previously multiplied by a sine or a

cosine function. The advantage of this transformation is to show that the initial 6

constraints were not linearly independent. We easily see that some of the constraints

on the right side are the same:

• the second equation of (6.4) and the second equation of (6.6).

• the second equation of (6.5) and the first equation of (6.6).

Removing the duplications, we obtain 4 constraints associated with the following

one-forms

ω1 = sinψ dx− cosψ dy − a cos(ψ − θ) dθ

ω2 = sin θ dx− cos θ dy

ω3 = cosψ dx+ sinψ dy + a sin(ψ − θ) dθ −Rdφf

ω4 = cos θ dx+ sin θ dy − r dφr .

It is not hard to show that the aforementioned one-forms are linearly independent as

long as ψ 6= θ. They define a rank 2 distribution D =
⋂4
j=1 kerωj . We note that the

one-forms ω1 and ω2 had defined the distribution H in the case of the skater. In order

to find a basis of the rank 2 distribution D we shall add to the basis {X1, X2} of H
given by (3.17 − 3.18) a linear combination of vector fields ∂φr

and ∂φf

Y1 = X1 + α1∂φr
+ α2∂φf

= ∂ψ + α1∂φr
+ α2∂φf

Y2 = X2 + β1∂φr
+ β2∂φf

= a cot(ψ − θ)
(

cos θ∂x + sin θ∂y
)

+ ∂θ + β1∂φr
+ β2∂φf

.

The coefficients αi and βi are determined from the conditions ω3(Yi) = ω4(Yi) = 0,

i = 1, 2

α1 = α2 = 0, β1 =
a

r
cot(ψ − θ), β2 =

2a

R
sin(ψ − θ).
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Hence the vector fields which generate the distribution D are

Y1 = ∂ψ

Y2 = a cot(ψ − θ)
(

cos θ∂x + sin θ∂y
)

+ ∂θ +
a

r
cot(ψ − θ)∂φr

+
2a

R
sin(ψ − θ)∂φf

.

It worth noting that when r,R → ∞ we get Yi → Xi, i.e. we recuperate the case of

a skater.

The commutation relations. Since

[Y1, Y2] = a∂ψ
(

cot(ψ − θ)
)

V +
a

r
∂ψ(cot(ψ − θ))∂φr

+
2a

R
∂ψ(sin(ψ − θ))∂φf

,

[Y1, [Y1, Y2]] = a∂2
ψ

(

cot(ψ − θ)
)

V +
a

r
∂2
ψ(cot(ψ − θ))∂φr

+
2a

R
∂2
ψ(sin(ψ − θ))∂φf

,

[Y2, [Y1, Y2]] = (∂2
θψ cot(ψ − θ))V +

a

r
(∂2
θψ cot(ψ − θ))∂φr

+
2a

R
∂2
θψ sin(ψ − θ)∂φf

,

it follows that the iterated brackets will be a linear combination of the vector fields

V = cos θ∂x + sin θ∂y , ∂φr
, ∂φf

,

and hence it cannot generate the entire tangent space of R
2 × S

1 × S
1 × S

1 × S
1.

Future developments. The study of problems involving rolling nonholonomic con-

straints led to non-integrable distributions which are not bracket generating, and

hence the Chow’ s connectivity result cannot be applied here. However, ad-hoc con-

structions of curves tangent to the distribution can be obtained, so these type of

problems produce a class of distributions which are counterexamples for the converse

of the theorem of Chow. The problem involving multiple wheels or blades, as well

as finding their optimal trajectories constitute a further development of the problem.

The dynamics of a bicycle with oval wheels constitutes also an open problem.
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